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- Proteins and protein folding, characteristics, time scales 
- Levinthal paradox: how can we deal with it


- experimental facts
- Forces inducing folding 


- How can we model protein folding?
- All-atoms models and empirical potentials
- Simple models: homopolymers, random bond heteropolymers 


-  Random energy model, with an eye on Kramers' rate theory


- folding funnel and energy landscapes: microscopic and macroscopic
  characterization 
- HP models, many letters models
- Simple  off-lattice models  


- Go models
- WSME model







HORATIO 
O day and night, but this is wondrous strange!


HAMLET 
And therefore as a stranger give it welcome.
There are more things in heaven and earth, Horatio,
Than are dreamt of in your philosophy. 


... I'll try to show you the wonders of a strange phenomenon, whose 
existence would be difficult to imagine, if we didn't see it...
 







Protein Folding: the process by which a swollen protein reaches
it functional, Native State.


 


        Native State


We will focus on globular protein, that fold in water. 
Membrane proteins live in a non-polar environment: they
are very difficult to study experimentally.







PROTEINS


Linear Polymers, 50 ÷ >4000 amino acids (typically ~200 aa, 
                                                                                    ~3000 atoms) 


Variety of biological functions (enzymatic, structural, transport, 
electron transport, movement, signal transduction...)  


Proteins can function only  when they are in a particular 3D conformation
(Native State)







The building bricks: aminoacids (20 different kinds, with a common
and a varying part (side chain))


Non-polar (aliphatic, aromatic), Polar, Charged (positive, negative)



























Polymerization of the aminoacids: the “primary structure”.
Aminoacids in proteins are called “residues”.


R = side chain (20 types)
Peptide units (the planes in the figure) make up the backbone, or
main chain. 


The primary structure involves (highly energetic) covalent bonds:
it remains fixed during protein's life. Hence the sequence of  residues 
is fixed, and different for each protein.  For a protein of 200 a.a., 
20200 sequences are possible... (are they really?)







The Native State: the (awful) Tertiary Structure







By the way: it lives at room temperature, so don't expect it to stay still!
Look at the possible backbone configurations, as reconstructed through
NMR... 


Yet it preserves the overall structure! Notice that a flexible structure is 
an advantage: it gives entropy (and hence, stability) and prompts for
functional motion.







...and it contains some regularities! It has no symmetry, but it is made up
assembling parts of roughly regular parts, with almost periodic backbone.
Side chains protrude out of the backbone and fill densely the interior. 







A closer look to the structure: let's see the details...


primary structure: the sequence of covalently bonded a.a.
secondary structure: hydrogen bonds
tertiary structure: 3-D overall arrangement of one chain
quaternary structure: assembly of several chains







α-helices and β-sheets are elements of
regular Secondary Structure.


Regularity is provided by a network 
of highly directional hydrogen bonds.







...helices have a dipolar moment







β-sheets are locally almost planar elements of structure. They can be parallel
or antiparallel.











Some relevant questions:


- How do secondary structure combine to produce tertiary structures?


- Are tertiary structures arbitrary (in terms of any suitable geometrical 
   indicator), or can only some structures exist? 


- And if there are preferred structures, why? What are the rules?
  How can these rules  be explained in thermodynamical and dynamical
  terms?


Let's see the experimental facts...







...It turns out that tertiary structures can be classified into classes and
   families:



















At present, millions of  sequences:


CATH v3.1.0:  Date 19-01-2007
N. of Domains: 93885 N. of Chains: 63453 N. of PDBs: 30028
C A T H   
Mainly Alpha 5 305 652
Mainly Beta 20 191 415
Alpha Beta 14 496 922
Few Sec.Str. 1 92 102
Total 40 1084 2091


CATH: hierarchical classification of protein domain structures, in 
Class(C), Architecture(A),  Topology(T), Homologous superfamily (H).


A: overall orientation of secondary struct., independent of connectivities. 
T: topological  connections and numbers of secondary structures. 
H: proteins with highly similar structures and functions. 







- Observed proteins sequences are just a tiny fractions of all the possible
sequences, and there is a wide degeneracy: many sequences fold on 
basically the same structure, and many structures share the same 
overall geometrical characteristics.


- Not all the folds are equally “populated”: some are the native structure
of a wide number of sequences, and others of just a few.







Protein's native structure: an unlikely trade-off among


- stability


- function (constraints on stability, active site, allosterism,...)


- designability: a good structure, with a nice stability and capable of 
   function, must be kinetically accessible in reasonable time.
   Why are some structures more populated?  are they more designable? 


- evolution: dynamics in sequence space is not ergodic, and we 
   don't even know if it is ergodic in a subspace. 
   Is evolutionary dynamics an optimization dynamics?







Let's go back to Protein folding: 
in vivo: molecular crowding. Here is how a cell looks like...


 “Chaperons” are often needed...







But in vitro: it is reproducible (at least for proteins<300 res).


Take a protein, “denaturate” it (by heating, adding acids, adding
denaturants...): biological activity disappears.
But:  restore physiological condition, and the protein will be 
active again. 


Anfinsen's discovery:
1) Proteins “work” just when  in their native state.
2) The native structure and the whole folding process is encoded in 
the sequence of  aminoacids, and in nothing else.







Folding Problem(s):


1) native structure prediction from sequence


2) prediction of the folding process from denatured state to native:
    characterization of the unfolded state, intermediate states (are there?),
    folding rates,...


3) sequence design (“inverse folding” problem): given a structure, find
    the sequence folding on it


(4) protein-protein interactions during folding: interactions with 
chaperons, aggregation, misfolding, etc.)







Folding as a single molecule process: 


Time scales: 
10-14 -10-13 s:


   
vibration of of a covalent bond


10-11 -10-10 s: backbone movement
10-7 -10-6 s: alpha helices
10-6 -10-4 s: beta sheets
10-5 s


 
- 1 s: folding time


Stability: native state is only marginally stable with respect
to denatured: 10 Kcal/mol, that is ≈ 20 k


B
T. This means that if


each residue were independent from the others, its stability would
be only 20 k


B
T/N ≈ 0.1 k


B
T: also in native conditions, it would


pass a lot of time unfolded. Cooperative behavior of the residues:
folding is a sort of first-order transition, with a jump in enthalpy
between the native and the denatured state.







Folding as a single molecule process: let's look at kinetics 


Anfinsen's discovery of an essentially thermodynamic nature of protein
folding is nice, but: Consider a single protein, in a unfolded conformation
and suddenly restore refolding environment: it will reach the native state.


But how?  


Proteins are flexible, monomers are small,  and in solution: these 
changes will be ruled by brownian motion. 


Levinthal paradox: 
consider a protein of N residues: if each peptide unit  has k conformation, 
the native state will be one of the  kN conformations of the protein. 
Taking k≈8 and N ≈ 100, for a random search with moves every 10-13 s, 
folding time >>  age of the Universe







Solution of this “paradox”: 


folding is not like a random search of  the  holes in a golf field: 
there must be a “driving force” reducing the dynamical exploration 
to a reasonable number of microstates. 


If we think about the potential energy landscape of  the protein,
we realize that minima and saddles  cannot be arbitrary.


Indeed, very often experiments reveal a two-state behavior in kinetics:
there is no transient phase between depopulation of the unfolded state 
and population of the native one.







Experimentally: few populated states in Thermodynamics an Kinetics 


Two-state thermodynamics:


I obs T =
I N T e


−GNI U T e
−GU


e−G Ne−GU
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=fraction native, unfolded







Experimentally: few states Kinetics. Let's see Two-State:
                    
                      
Consider the process  


In general, 


If   k
f, u 


 constants: two-state kinetics:
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Notice that the few-state behavior is so common that in general
biologists postulate them to interpret their data!!!


In thermodynamics (see Adrian Velazquez's lectures):


assuming that just N,U states exist, and that their “baseline” is 
I


N,U 
(T), find K to fit the experimental signal:


where 


I exp T =
I N T e
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In kinetics, 







In kinetics, they fit the signal to a single exponential (and in case of
poor quality, to a two-three exponential, or to a stretched exponential).
For a two-state system, we have:


Are these simple behaviors easily explained in terms of the interactions
involved in the folding process? Let's see...


I exp t = I N f N ,∞I U f U ,∞ [ I N  f N ,0− f N ,∞ I U  f U ,0− f U ,∞ ]e−k t







Forces in protein folding


The minimal ingredients for compactification to a unique structure: 
 -  self avoidance (obvious: but also mandatory for uniqueness)
 -  attractive effective monomer-monomer interactions (so to allow 
    the low temperature collapse). 
 - ...and perhaps more. 
Do we have them?


Let's have a look at the interactions in the game:
covalent bonds:    50-150 Kcal/mol (>>k


B
T: primary seq. is fixed)


hydrogen bonds:  5-8 Kcal/mol (non-polar solvent)
1-2 Kcal/mol (polar solvent)


Van der Waals: 1 Kcal/mol
Coulomb: 1 Kcal/mol


These are true, direct, interactions, especially  effective at low 
distances (≈0.1 nm). However, it 's common opinion that 
hydrophobicity is the major leading force for folding.







Hydrophobicity: basic facts:


Protein folding take place in water: to establish stability of Native 
vs Unfolded, not only energy  but also entropy must be considered !


ΔH
prot 


> 0   Van der Waals in protein interior are weaker than interaction
                  with water, even of apolar species


ΔH
solv 


< 0  Water makes more H-bonds with itself if protein is folded


ΔS
prot 


< 0  Obviously, a  native compact chain has much smaller entropy 
                 than an swollen one
 
ΔS


solv 
> 0  To keep its network of Hydrogen bonds, water gets  ordered 


                 around a nonpolar specie: low water entropy in unfolded state! 


F N−U=H protH solv−T  S prot−T S solv







Hydrophobic interactions: 


nonpolar molecules induce ordering in  water to preserve  hydrogen bonds: 
entropy favors effective attraction between  nonpolar (hydrophobic) residues







    


Silverstein et al,


Experimental


ΔH


TΔS


ΔFExperiment:
Transfer of a nonpolar
specie (Argon) from gas
into water


Model: 
argon: circle, Lennard-Jones
water: LJ+HB


U X i , X j =U LJ r ijU HB X i , X j







What we have learnt so far:


Thermodynamics (equilibrium)
- folding is substantially an  equilibrium thermodynamic process: 
  an external parameter, (T, [Denaturant], pH,...) acting as an intensive 
  variable, shifts the thermodynamic equilibrium towards one of two, or 
  some,  states.


- one of these states, the Native State, is peculiar for being:
  *   functional
  *   a collection of “few” microstates, close in geometry
  *   geometrically structured, with “regular” secondary structures and 
       limited assembling preferences.
  The others phases are: 
  *    an unfolded state, whose radius of gyration depends on the 
        conditions (it may be swollen or keep residual local structure)
  *   possibly some equilibrium intermediates, with low population  







What we have learnt so far (cont'd):


Thermodynamics (equilibrium)
- These equilibrium phases are separated by first-order-like transitions:
  cooperativity plays a fundamental role: a barrier is present separating 
  N from U. Folding implies  jumping over this barrier.


- Several interactions involved.   Entropic “interactions” are
  relevant (hydrophobicity)


Kinetics
- Microscopic landscape must be “tuned” for easy and robust dynamics 







Born to Function:


Native state must be:


-  global thermodynamical minimum (or a long lived metastable:
    a few cases exist)


-  quickly accessible by dynamics in a reasonable time scale (ms ÷s)
    
-  stable against denaturation, but not too much (function implies 
    switching between states, degradation must be possible)


- “resistant” to mutations: highly designable!
   (A polymer of 100 a.a can have 10130  sequences: if structures weren't 
    highly designable, life wouldn't have evolved)







What would we like to predict with a model:


- stability of the native state


- characterization  of the important steps in the kinetics: what are 
the “bottlenecks”?


Difficulties: 
- the first requires the evaluation of free-energies, that is: a global 
  knowledge of the energy landscape


- the second requires the characterization of the “saddle points” and
  of unlikely conformations, very difficult to sample







Theoretical models: from lattice to all-atoms description.







How can we model all this? 


Relevant numbers: N
ato, prot


 >≈1000 ,  N
ato, solv


 ≈10 N
ato, prot


  : tens of
thousands of atoms to simulate.


- In principle, the most microscopic events (e.g formation of H-bonds), 
  would need a quantum mechanical approach. But, even with 
  approximations of Density Functional Theory, etc this is computationally
  out of reach.
  (at present, QM limited to a subset of atoms, in a QM/MD scheme)


- Simplified all-atoms description: atoms as classic spheres, classical
  Newton equations to move them (Molecular Dynamics)







Further possible simplification:  
divide variables into slow and fast, integrate fast degrees of freedom. 


From the (potential energy) part of the partition function:


For each value of the slow X, one can assume equilibrium for the fast 
variables x , to obtain an effective potential for the  slow variables:


This is very common to “remove” water and work with just the protein.


Z V=∫d xd X exp−V x , X 


V eff X =−k bT ln ∫d x exp−V  x , X 







All-atoms empirical potentials (CHARMM, AMBER,...)







Applications:


- When a quantitative prediction is required, they are the best one can use.


- Very useful for structure refinement (adding constraints from experiments)
  and to simulate high T unfolding


- adding ad-hoc potentials, with extra statistical terms,  they are useful 
  for “ab-initio” structure prediction 


Remarks: 
- they are extremely “popular”: everyone  tend to believe them.
- they represent the approach with  more chances to improve


The above reasons explain projects like IBM's BlueGene, or 
Riken MDGrape (petaflop dedicated computer)  







         Results: realistic, but short


- MD simulations with “realistic” force fields can describe a  ns  life 
  of a small protein (45 residue), at physiological T with explicit solvent,
  10÷100 ns with implicit solvent. 
   (NB:  bond formation: ~ 0.1 ps, so that time step  ~10-15 s is necessary.
    Folding times > 1ms approx)
  
- just a few runs: little statistics. Equilibrium properties?


Remarks:
simulations are reliable, if potential is reliable!  Though realistic, these 
potential are empirical.  Even in the all-atoms, explicit solvent case, 
there is a number of implicit assumptions:
- two-body terms
- transferability of parameters calculated for one molecule to another.


The description of an atom involves different parameters according to
the environment (different hybridization, different chemical bonds,...)







Coarse-grained model and “inferred potentials”: resort to


-Simpler description of chain: Cα, Cβ, UNRES, ...


-Potentials inferred resorting to a database of structures:


Potential of mean force: derived from frequency in a library of 
conformations: from the frequency of features(contacts, conformations,
etc), infer a potential:
for instance: ε(A,B)   between aa. of type A and B can be inferred from
the frequency f(A,B) by which they appear in “contact” in the database
ε(A,B) = - const ln(f(A,B)) 


Learning by Threading: take a database of known structures, take a 
training set of  sequences s


i
 with known native structure, learn interaction 


parameters ε
ij 
by asking that 


                 E(s
i
, Nat(s


i
)|ε


ij
)<<E(s


i
,Wrong(s


i
)|ε


ij
)  


for all structures and  sequences in the training set.







H.A. Scheraga et al,  J. Comput. Chem. 18, 849 (1997)







Problems with this approach:


1) Potential of mean force: sampling native states is not equivalent to 
sampling all the  configuration space!! There is no guarantee that the 
force field will  lead the protein to the folded state. 


2) Threading: dimensions of the training set, impossibility to fulfill all 
the inequalities 
Results are generally not wonderful for proteins not in the training set.


However:
1) refinement can always be added
2) best performing ab-initio method in CASP resorts to realistic potential
+ inferred potentials  (Baker's group)







Simple Models


Let's follow a completely different approach:  let's try to find the 
minimal ingredients that produce a protein-like behavior.


- We will address questions like:


- what is the minimal number of species required?


- is protein-like behavior a property of a random sequence?


- How is protein-like behavior related to the structure of the energy
   landscape?


- Can we characterize the folding mechanisms and bottleneck?







Let's start by observing that 
a hydrophobic homopolymer  is not a protein!


A homopolymer has


- theta transition of II order from a self avoiding chain to a compact chain


- extensive number of compact states                         : we cannot identify 
   the native state of a protein with the compact phase of an homopolymer


- no secondary structure.


Homopolymer collapse can be a good model of just the first stages of
folding (perhaps...) 


M ∝ q /eN







Heteropolymers:


- can we say something in general? 
- Is protein-like behavior a generic property? 


Digression: Complex (disordered) systems


- Example: spin glasses


- frustration: ground-state highly 
  degenerate, many different structures


- properties depend on details of the
  hamiltonian. 
  Some properties are self-averaging


- new techniques in statistical 
  mechanics


(Jxy  > 0)


(Jxy  < 0)


Example of a complex, frustrated system:
spin glass. In ?, both σ = 1 and σ = -1 are
bad choices. Ground state is highly 
degenerate. 







Random bond model on a cubic lattice 
(Thirumalai,Klimov, cond-mat/0101048)


Consider a polymer of N residues, with energy:


where Δ() is 1 if two non-consecutive residues are next-neighbors 
on the lattice (of spacing “a”), and the interactions B


ij
 are random 


variables with distribution:


Implicit idea: identical pairs of residues (i,j), (i',j') at different positions
in the chain will interact differently.







Exhaustively count SAW, Compact Structures (CS), Minimal Energy 
Compact Structures (MES) for N<=15 on a cubic lattice. 


MES defined by E(MES)<Emin+ΔE,


B0=-0.1 (reproducing 55% hydrophobic, 45% hydrophilic as in proteins)
ΔE=0.6







The idea is that protein-like structures must be low lying ones, 
among all the possible structures that can be formed.
The use of a lattice model and of random bonds allows to infer
“generic” properties of MES, independent of the realization of 
disorder.  


Results:
- number of SAW and CS: exponential in N (as expected)
- number of MES:              increases as log(N)    (at most).


With minimal requirements of low energy and compactness, 
configuration space becomes sparse.


This suggests that  many sequences will necessarily have the same
native structure (but here we haven't sequences, so this is not a 
proof). More on this later on, with HP models.







Random Heteropolymers:
can we say something without lattice and exhaustive enumerations?


Let's see an analytic approach (Garel, Orland, Pitard, cond-mat/9706125):



























Frozen state  ≠ native. 
What we get is that in the frozen phase we have  that the number of 
possible configurations is not exponential any more.


But there  is not unique native state, and low lying states can act as 
traps for  the kinetics.


Let's see this with the simplest frustrated model: it can be proved
indeed that the Random Bond Heteropolymer Model, when considering 
just  compact conformations, is equivalent to the Random Energy Model,
introduced for spin glasses, where chain connectivity is neglected.







Random Energy Model: application to proteins
   (D.J.Wales, ”Energy Landscapes”, Cambridge Univ. Press,2003, 9.4;
     Bryngelson e al., Proteins: Struct.,Funct and Gen.,21,167,1995)


Let's take a biased approach: suppose that we have a “protein”,
that we characterize as having a special, “native” state.


Let's introduce an order parameter: a measure “n” of the structural 
similarity to the native state, normalized between 0 and 1.


Let's suppose that for any value of ”n”, the energy of a state with that
“n” is a gaussian random variable:


so that the number of states at a given “n” will be given by 


(possible expression:                                )  


PE ,n= 1


2E2n
exp−[E−En]22E2n 


E ,n=nPE ,n


n∝N 1−n







number of configurations at a certain “n” strongly dependent on “n”:







Let's put in the Boltzmann factor:


The most probable structure at fixed similarity “n” and at temperature T
will be the maximum of p(E,n):


Assuming negligible fluctuations, the corresponding number of states 
and entropy will be:







whence one can estimate the free-energy as


This can have different forms (we will discuss them in the following):
downhill, two-state,....


Important remark:
Notice that the expression of  S(E


m.p.
(n), n) vanishes at T=T


g
(n):


                                                                       glass transition temperature


where the system “runs out” of entropy, and can live in one of few 
states, that depends on the realization of  disorder.







What kind of kinetics emerges on such a landscape?


Digression: Kramer's theory (overdamped)


Given a one-dimensional system, with two states separated by a
barrier, and assuming stationary conditions, with negligible current,
the rate for a particle in A to cross the barrier is


where ω
A
 , ω


C
 represent the widths 


of the well A and the transition state.  


τ=mD/(k
B
T), with D the diffusion


coefficient along the reaction 
coordinate 


r=
AC


2
exp−V C−V A


k BT 







Is this discussion still valid for REM? 


Kramer's formula is derived under the assumptions:
1) we are dealing with just one path: well defined reaction coordinate
2) no configurational entropy in the various states 
3) the pre-exponential coefficient accounts for the shape of the 
    potential and for the diffusion coefficient, which is homogeneous
    along the reaction coordinate. Solvent is just a source of friction


What we have here in our REM model:
1) in principle, many pathways between states at different “n”
2) entropy
3) diffusion is related to the escape time from the states at given “n”:
    we will see that this is dependent on the coordinate “n”







REM kinetics: 
the expression of E


m.p.
 tells us that the most likely conformation at T 


does not coincide with the peak of the distribution. 


That is, there is a gap between the most likely and the majority of its 
neighbors. 


This implies that, there will be a typical “microscopical” escape time 
with a super-Arrhenius behavior (Ferry law)


NB: this holds true out of the frozen phase, where we can talk of
“typical” behavior! Indeed, this assumes that there are many “channels”
out of the most likely state. But this is not always true!!  


Em.p.T ,n=En−
E2n


k BT







In the frozen phase:
When T<=T


g
(n), with


the escape time will need a random search of the one, dominant channel, 
in a  “Levinthal” way, which will take no shorter than


Notice that the freezing can also be reached at fixed temperature, upon 
increasing n:


(at fixed n, T<T
g
 ) or (at fixed T, n>n


g
) --> frozen phase.







There is a sudden fall in the number of paths if freezing takes place...







Kinetics scenarios:
0) Downhill, with or without freezing
Folding time= maximum of


1) two-state, no freezing
2) two-state, late or early freezing.
Folding time= maximum of 


           =the value minimizing τ above


Again, folding time is not Arrhenius-
like (exp(barrier/T))







Important remarks:


- Type I scenario is most likely to be the relevant one for protein folding.


- Type 0 scenario could appear from a type I at low or high temperatures.
  Recent (but controversial) claims of  experimental observation of a 
  protein with a type 0 (downhill) scenario at all temperature


- In every case, scenarios with a freezing transition, especially an early 
  one, are unlikely for proteins, because they wouldn't be robust against 
  mutations: in the frozen region, minimal energy configurations and 
  folding paths depend on the realization of disorder, i.e. on sequence,
  and a mutation could change completely the overall pathway.


  Experimentally, some similarities and some differences: 
  φ-value analysis says that most mutations don't change  the path, 
  but some probably do.  Probably folding paths are few and quite 
  degenerate on  sequences. (More on this ideas later on, with microscopic 
  characterization and  Go-models.) 







 Can we trust these results? let's revise the hypotheses:


1) We are working with a (modified version of a) REM which has been
    proved to be equivalent to the compact phase of a heteropolymer model.
So when we talk of type 0,I scenarios we are referring just to compact
states, without any control on the geometry of the collapsing chain, and
on the coupling between the latter and the similarity to the native state “n” 


2) existence of a reaction coordinate “n”: folding proceeds along the 
     gradient of F(n).
Very strong assumption: we are projecting the dynamics on just one
coordinate, “n”, and are acting as if motion along “n” was slow, with 
all other degrees of freedom at equilibrium at given “n”.
But actually we don't know if this is true! 







3) at any “n”, gaussian distribution of the energies
Probably reasonable at low n, could break down at high n (close to native).
Moreover, in calculating F just using E


m.p.
 we ignored fluctuations, 


implicitly assuming that there is a huge number of states at any n 
(no freezing).


4) when estimating barriers, we assumed that the close-neighbors of
    the most likely configuration at a given “n” are still configurations
    of the same “n”.
This is related to 2) and presents the same problems.







In every case, REM predicts relaxation times costrained by the escape
from the huge number of minima of a landscape, characterized by 
typical barriers ΔE2(n)/(k


B
T) .


So, according to  REM:
a generic polypeptide is expected to have a complex (glassy-like) 
behavior: frustration, rugged energy landscape,  glass transition, 
slow dynamics,...


This would be in general incompatible with function, and hence, life.
Evolution has optimized sequences/structures for producing quick 
and stable folders.


The landscape must be “tuned”, in the sense that the roughness must be
small, and an overall driving force towards native state must be 
present... Can we make this statement quantitative?







Let's consider a two-state system, with minima at n
U
, n


N
 : 


assuming  F(n
N
) ≈ Ē(n


N
), we can define the mid-folding temperature 


T
f
 (when  F(n


N
)=F(n


U
) ) and find:


with 


Fast folding has been associated to maximizing T
f
/T


g
, which corresponds


to minimizing ratio of the “roughness” ΔE over the stability (Ē(n
U
)-Ē(n


N
)).


Fast folding implies a reasonably smooth landscape, where barriers are
small compared to the stability gap!


Exercise: following the lines of the above discussion of REM, prove the 
above result. 


T f


T gnU 
= 1


y
11− y2


y= 2S0nU 
k B


 E nU 
E nU −E nN  







...A moderately rough landscape...







A good protein must present a reasonably smooth “folding funnel”! 











Current understanding (from experiments and theory):


Hydrophobicity main driving “force” to collapse and important for 
stability, but correct folding is the product of many interactions 
Stability is a result of huge cancellations of terms 


A principle of minimal frustration is at work:


- native state= free energy minimum.


- no structurally different competing states at similar energy 


- small energy barriers compared to driving force 
  (little frustration: small ΔE/(stability gap))


- huge funnel reduces the search in configurational space 
   (NS must be reached by “all” initial conditions)


- multiple pathways, transition state ensemble, entropic barriers







Let's have a “microscopic look” into the configuration space...
(Rao and Caflish, JMB 2004) 


- characterize the “minima” and “connectivity” 
  of small designed peptide beta3s.


- nodes=“minima” and links=”paths” 
  are identified dynamically: 


   CHARMM-PARAM19 (all heavy atoms, H bound to N or O).
   Implicit water. 72 foldings + 73 unfoldings; average folding time = 83 ns. 
   5x105 snapshots (every 20 ps). T=330K


   “Conformation”= a string of sec structure: e.g -EEEESSEEEEEES SEEEE-
   Weight “w”= the frequency of a conformation
    Found 1287 “nodes”  with significant weight (w>20 ).


    “link” between nodes  that are visited within 20 ps or that are separated 
    by  conformations with little weight. 







The beta3s conformation space network. 


Node size = statistical weight w. 
Node color=  average neighbor 
connectivity k


nn
: White k


nn
<30; 


cyan:  30<k
nn


<70;  red:  k
nn


>70. 


Representative conformations are shown 
by a pipe colored according to secondary 
structure: white=coil; red=α-helix; 
orange=bend; cyan=strand; 
N terminus is   blue. 


The variable radius of the pipe
reflects structural variability. 


The yellow diamonds are folding 
TS conformations
(TSE1, TSE2) characterized by a 
connectivity/weight ratio 
k/2w>0.3, a clustering coefficient
C<0.3, and 60<knn<80.







Remarks:
Difficult to find a good projection along a reaction coordinate. 
Fraction of native contacts fails! Even the ensemble with half of the 
native contacts is heterogeneous and hard to classify. 


Can we identify minima and transition states from a network analysis? 


Tools: 


k
nn


= average neighbor connectivity, i.e. the average number of links of      
        the neighbors of a given node.


C= average clustering coefficient:  probability that any two neighbors of a 
      node are connected. 


The TS conformations are saddle points, i.e. local maxima with respect to 
the reaction coordinate for folding and local minima with respect to all 
other coordinates. For this reason:
TS identified as the nodes with a high connectivity/weight ratio 
ki/2w>0.3 and low clustering C.











Correlation between P
fold


 and average neighbor connectivity k
nn


. For 
nodes with high connectivity/weight ratio and low clustering 
coefficient,  correlation = 0.89 


Open circles: three nodes used as a negative control (low 
connectivity/weight ratio and/or high clustering coefficient but similar 
fraction of native contacts) 







Observations:


- Conformation space network is scale-free  (power-law on the 
degree distribution: P(k)~k-γ ). Also for the random heteropolymer.


- The most connected nodes are also low-lying minima on the free-
energy landscape, yielding  “basins” in the landscape.
The native basin of beta3s  shows a hierarchical organization of 
conformations, not observed for the random heteropolymer. 
Very heterogenous denatured state.


- C(beta3s)=0.49; C(random heteropolymer) = 0.28. 
One order of magnitude larger than random networks with the 
same amount of nodes and links.( ...polymeric  nature?).


- Free energy minima and their connectivity emerge from the 
network analysis, without arbitrary reaction coordinates. 
TS conformations: nodes with high k


nn
/w ratio, low C. For TS 


conformations  k
nn


 correlates with P
fold


, the probability of folding.







A better (but even more painful)  microscopic description:
The folding funnel in terms of disconnectivity graphs


Cutoff at increasing energy thresholds E:
minima becomes connected if the
lowest barrier between them
doesn't exceed E.


a) funneled landscape


b) still funneled, but high barriers


c) rough landscape: low 
   interconversion from distant
   minima


Remarks: clear understanding of the 
“overall picture”, but how can we 
find all the stationary states?







The detailed microscopic exploration of all the stationary points
in the landscape is sound and interesting, but it is extremely difficult
to perform.


Indeed, resorting to projections on a few coordinates is often the best
way to understand something, even in all-atoms simulations.


Remember though that  the conclusions are as  reliable  as the choice 
of the reaction coordinate is...







(a) Potential of mean force as a function of 
radius of gyration, Rg, and fraction of native 
contacts, ρ. The contours are drawn every 
0.5 kcal/mol. 
(b) Potential of mean force as a function of 
fraction of native contacts, ρ.


C.L.Brooks III,J. Am. Chem. Soc.  121, 9947 (1999)


...Indeed, not always the number of native 
contacts is a good coordinate...


Protein betanova, 20 residues.
CHARMM, explicit water







...yet in other cases projection of trajectories on the two coordinates
(radius of gyration),(number of native contacts) gives a reasonable
idea of the folding process...
(CHARMM potential. C.L.Brooks III et al, Ann. Rev. Phys. Chem. 52, 499 (2001)) 


this:still bad







Using these coordinates allows a
comparison between models of 
different nature.


Free-energy  as a function of the 
number of native contacts (Q0) and 
the total number of contacts (C).  
 
The native state is a  cube with Q0 = 
28 (100%). 
Yellow= average path. Green and red 
trajectories  include
~95% of the trajectories.  


From 1016 possible random starting 
conformations, rapid collapse to a 
disordered globule; then  slow, non-
directed search among the 1010 


semicompact conformations for one 
of approximately 103 transition 
states. 


                              A.R.Dinner et al, TIBS 2000







How shall we design sequences to obtain this kind of landscapes?


The HP model


- Two kinds of amino-acids: hydrophobic and polar (H and P). 


- H amino-acids attract each other (it’s an effective interaction!). 
   E


HH
<E


HP
<E


PP
 (actually, E


HH
+E


PP
<2E


HP
, to favor segregation)


- Proteins are modeled on or off-lattice, in two or three dimensions


K. F. Lau and K. A. Dill, Proc. Natl. Acad. Sci. USA 87, 638 (1990),
H.Li et al, Science 273, 666 (1996) 


P
H







Different structures show very different
designabilities (=N


s
 of sequences having


that structure as ground state)


(Results with E
HH


 = −2.3, E
HP


 = −1 and E
PP


 = 0
Below: most designable structures)







Average gap of 3D   3x3x3 
structures plotted against N


S
 of 


sequences folding to that 
structure.


Most designable sequences are also the most thermodynamically stable, 
in the sense that they show the biggest gap between GS and the next low 
energy structure (which has unrelated geometry, due to lattice constraint).







Results: 


The HP model predicts proteins with a hydrophobic core (as seen 
experimentally), that fold below a certain temperature. 


Out of the 2N possible sequences (N is the protein length),  just a few 
(perhaps too few...) are  “good” sequences, with a unique native state 
(represented by the ground state). 
So, we recover that only a small number of  sequences can be proteins. 


Designability:
Of all the possible compact conformations, only a few are  chosen by 
the “good” sequences as native states. “Fold families” appears naturally 
within this model.


These results hold true even with Miyazawa-Jernigan interactions 
(20 letters), and in simple off-lattice models, but with discrete variables 
(Wingreen et al, Polymer 2004)







A simple, off-lattice model: BLN 
      D.Thirumalai et al, PNAS, 87, 3526 (1990), D.J.Wales, ”Energy Landscapes”, 
      Cambridge Univ. Press,2003)


B=hydrophobic 
L=hydrophilic 
N=neutral 


That is: attraction between BB, repulsion otherwise


The sequence was designed to fold 
on the above structure







Collapse transition at T
θ 
, followed by a folding one at T


f
. The free- 


energy profile as a function of the potential energy reveals two minima at 
T


f
: first-order like.


With a fine tuning of the interactions, it is possible to create a  “protein-
like” peptide, even if it is  not an extremely good folder: different 
arrangements of the strands produce competing low-energy structures







BLN-GO model, 500 minima, 
805 TS. Funneled landscape
                                                


BLN,500 minima, 636 TS:
Many competing low-energy basins  







We have seen that we can take a reasonable structure, a small alphabet
and can design a “reasonable” potential to fold that sequence into the
target structure. Yet, most of the times we will have to face the problem of
alternative minima for our sequence, givin rise to frustration and slow
interconversion. 


Let's take an alternative approach:
use a unreasonable potential, to guarantee that there is no energetic 
frustration (if present, frustration will be of just an entropic origin), and
study the folding process in this “smoothed out” landscape...







Gō-like models: 


from the knowledge of the native structure, build an hamiltonian
which favors the native contacts  and disregard all the others 
(...are you kidding? No!)


These models assume the knowledge of native structure to address 
the following  questions: 
- Is energetic frustration really so relevant during folding? what happen
  if we delete it?
- How much do rates depend on just the native state geometry? 
- Which geometrical  characteristics are more   relevant? 
- Are there geometries which are more difficult to reach? 
These models present a landscape as funneled as geometry allows!


This approach could be realistic if: 
- real native contacts are better than non natives and/or
- during folding, dynamics only pass through good contacts


Is it realistic? Compare with experiments... 







Go-like models (all atoms, reduced represent.,  Cα) 


Example: 
Cα case:


if i,j native pair: ε
1
(i,j) < 0, ε


2
(i,j) = 0, otherwise ε


1
(i,j) = 0, ε


2
(i,j) > 0


σij=contact distance if i,j native pair,
otherwise σij=4 Å







With these models, it is possible to study folding routes, intermediates,
φ-values of a protein ...


Clementi et al, J. Mol. Biol.  326, 933 (2003)







Introducing non-native interactions as a small perturbation:
(Clementi, Plotkin, Prot. Sci. 13,1750 (2004))


η
ij
 = random gaussian variable with mean ε


NN
 and variance b².


Choose:  ε
NN


<< ε   to ensure T
θ 
~ T


f
     


              b
 
<< ε   to ensure T


g
<<T


f
 


with ε the average energy per residue in the Go-model







B) barriers at T
m
 tend to decrease !


C) but at fixed T=T
m
(Go), we see that increasing variance of non-native 


     contacts favors unfolding


Q=fraction of native contacts formed. 
Results of simulations with Src-SH3 domain







...as seen with REM, in a good folder Tf/Tg>>1, and, as expected, the 
   temperature of glass transition T


g
 increases with b!







Results:


- with good tuning of parameters, these models can recover NS


- substantially correct identification of experimental folding
  nucleus and behavior (which structure forms first, etc.) in a 
  number of proteins (CI2, SH3, Barnase, circular permutations...)
 
- with all atoms, improved cooperativity


Small proteins appear indeed to have little energetic frustration!


Adding moderate non-native interactions, folding is faster, provided
that the folding temperature significantly greater than the glass one.







Discrete Go-models: Wako-Saitô-Muñoz-Eaton (WSME) Model
  H. Wako and N. Saito, J. Phys. Soc. Jpn 44, 1931 (1978);
  V. Muñoz et al, Nature 390, 196 (1997).


mi  = 0,1 (peptide unit between residue i, i+1 is unfolded/native )


Δi j   = number of atoms from residues i, j+1 closer than  4 Å in the 
        native structure


 


 ε  = energy from each atom-atom contact (ε<0)
 qi  = entropic cost of native bond mi =1 with respect to mi =0. 
               ensures that only contacts within a native stretch are 
               accounted
 


Heff {mk }=∑
i j=2


N


i j ∏
ik j


mkRT∑
i=1


N


q i m i


i


i+1


j
j+1


mi


mj


∏
ik j


mk







Equilibrium solution:    define 


apparently uncoupled, but:


Constraint:


This enforce the “black triangle”
shape on the right: 
 


Heff {mk } = ∑
i j=2


N


i j x i , jRT∑
i=1


N


q i x i , i = ∑
i j


hi , j x i , j


x i , j=∏
ik j


mk


x i , j = x i1, j x i , j−1


x i , j = 1● : ○ : x i , j = 0







Equilibrium solution (continued): 


Transfer matrix approach:  (P.Bruscolini, A.Pelizzola, PRL 2002)


- row j (j=1...N) can exist in  a total of j+1 states :
                         right-aligned black balls  


We can write the partition function:


 j = 0, , j


Z =∑
{k }


Q0 ,1


0,1 Q1 ,2


1,2  QN−1 ,N


N−1, N  QN ,0
N , N1


x i , j = 1● : ○ : x i , j = 0







Equilibrium solution (continued): 


Cluster Variation Method : 


Free energy is calculated minimizing:


p x  =
∏ p  x  ∏ p x 


∏ p  x  ∏ p x 


● ●
●


FCVM = ∑
= , , ,


∑
x


p xha p x ln p x
●


●







Kinetics:


consider the discrete-time master equation 


where
                                        
●                                        is any allowed configuration of the x


i,j 
, 


●  x'  differs from  x   by the folding flip of just one peptide unit, 


●  the transition probability W is given by Metropolis Kinetics:


pt1x  =∑
x '


W  x ' x pt x ' 


x = {x i , j , 1 i jN }


W x ' x  = −1 min1, exp[−H x −H  x ' ]


W x x  = 1−∑
x '≠x


W x x ' 







Two possible approaches:


1) Monte Carlo Simulations


2) Local Equilibrium Approximation


    Imposing this factorization at all times, it is possible to write
    an evolution equation for the observables <x


i j
>:


      (Pelizzola, Zamparo PRL. 2006; J. Stat. Mech. 2006)


pt  x  =
∏ pt ,  x  ∏ pt ,  x 


∏ pt ,  x  ∏ pt ,  x 


● ●
●


d 〈x i , j 〉
dt


= f {〈 x k , k 〉 }







Experimental rate dependence
on the “contact order”:
   (Ivankov et al, Prot. Sci. 12, 
   2057 (2003))


circles: proteins with two-state kinetics
triangles: multi-state
crosses:small peptides


ACO=
∑i j


∣ j−i∣ij


∑i j
ij







Elucidating the role of geometry on relaxation rates: ideal structures
(P.Bruscolini, A.Pelizzola, M.Zamparo, submitted )


 ln k  = 2. 6633 −  1. 3113 ACO







Antiparallel structures: s= number of strands


 | Slope|  = 1. 21 −  3. 5 exp(− 0. 62 s )







Remarks 
WSME model's thermodynamics  can be known exactly, kinetics can be 
dealt with  within a sound analytical approximation


These kind of models allow to ask generic questions on protein-like 
behavior, and also to predict, semi-quantitatively, the folding behavior 
of specific  proteins:


- Reasonable estimate of the barrier height for simple proteins.


- Reasonable agreement with experimental results for identification 
of the  folding nucleus (that is, the top of the barrier, that determines 
the speed of folding)


-Study  of model structures, to understand the origin of specific features
  of real proteins







Conclusions 


Proteins have evolved to cope with a number of requirements:
fast folding, stable but not too much, robust against mutations.
Simple macroscopic behavior from an amazing microscopic  complexity.


Structure is such that energetic frustration is minimized, and the folding
process amounts to a search of a few good pathways.


Many interesting aspects: we have focused on general features of protein-
like behavior,  and on the coarse-grained models describing them.


Folding, and functioning, are possible thanks to a “design” of the landscape.
Proteins: a tiny subset of “simple” systems, within a  huge sea of  “complex” 
random polymers.  Is it possible to define “protein-likeness”, in terms of the
characteristics of the configuration space? To define an 
equivalence relation  between sequences folding to the same structure? 
To find similar simple  behavior in subset of other glassy systems?
...a comprehensive theory is still  waiting to be developed....






