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The properties of discrete breathers in dissipative one-dimensional lattices of nonlinear oscillators
subject to periodic driving forces are reviewed. We focus on oscillobreathers in the Frenkel–
Kontorova chain and rotobreathers in a ladder of Josephson junctions. Both types of exponentially
localized solutions are easily obtained numerically using adiabatic continuation from the
anticontinuous limit. Linear stability~Floquet! analysis allows the characterization of different types
of bifurcations experienced by periodic discrete breathers. Some of these bifurcations produce
nonperiodic localized solutions, namely, quasiperiodic and chaotic discrete breathers, which are
generally impossible as exact solutions in Hamiltonian systems. Within a certain range of
parameters, propagating breathers occur as attractors of the dissipative dynamics. General features
of these excitations are discussed and the Peierls–Nabarro barrier is addressed. Numerical scattering
experiments with mobile breathers reveal the existence of two-breather bound states and allow a first
glimpse at the intricate phenomenology of these special multibreather configurations. ©2003
American Institute of Physics.@DOI: 10.1063/1.1557237#
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Discrete breathers in dissipative arrays of nonlinear os-
cillators with periodic forcing show a remarkably rich
variety of behaviors, compared to Hamiltonian discrete
breathers. Nonperiodic localized solutions in Hamiltonian
lattices would decay due to the unavoidable emission o
phonons which delocalize the breather energy. This also
explains why Hamiltonian mobile breathers can only be
numerically observed as„long-lived… transients. However,
as we will see here, quasiperiodic, chaotic, and mobile
discrete breathers appear as exact solutions in dissipative
lattices due to the efficient damping of the radiation away
from the breather center.

I. INTRODUCTION

The aim of this contribution is to review some rece
work on intrinsic localized modes~discrete breathers! in dis-
sipative systems of nonlinear oscillators subjected to perio
driving forces. Because of their fundamental interest, Ham
tonian discrete breathers have received much more atten
than their dissipative counterparts. On the other hand, exp
mental systems~like Josephson junction arrays! where dis-
6101054-1500/2003/13(2)/610/14/$20.00
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crete breathers~DB! can be observed are often dissipativ
and this adds considerable interest to the study of the sub

The mathematical proofs of existence of discrete brea
ers in Hamiltonian networks of nonlinear oscillators1 re-
quires that a condition of nonresonance of the localized
cillation ~or rotation! with the band of extended oscillation
of small amplitude~normal modes! of the lattice has to be
satisfied. However, this condition is not required for the e
istence of discrete breathers in general dissipative netw
of oscillators.2,3 Moreover, as explicitly proved in Ref. 4 th
dissipative breather possesses the character of attracto
initial conditions in the corresponding basin of attractio
Roughly speaking, normal modes in dissipative lattices
exponentially damped out, and thus the exponential local
tion of energy is not destroyed by the resonance of the
harmonics with the ‘‘phonon band.’’ On one hand, this mak
considerably easier the numerical computation of dissipa
DB’s and on the other, as we will show below, it allows f
the existence of quasiperiodic and even chaotic DB’s, a
that is in principle excluded for Hamiltonian systems.

We mainly consider here two different examples of DB
in dissipative lattices: Oscillobreathers in the stand
Frenkel–Kontorova model with the commensurability o
© 2003 American Institute of Physics

 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



th
-

u
ion

o
fl
th
u

ea
.

di
fe
e
b
ex
d

o-
n
ly
lo

et
e

o

s-
ex
ip
,

rl
m
w

te
wo
he
rg
nt
te

ni
p

th
e

li
u
fr
.

in

n-
of
re-
ent
ll
w

-

nd
is
u-
r
on
s

the
ion
s,
for

as
The
ons

er-
e-
eric
om
-
ize

d
e

ize
a

nts

pli-
in
s-

he

611Chaos, Vol. 13, No. 2, 2003 Dissipative discrete breathers
~i.e., average interparticle distance equal to the period of
sinusoidal substrate potential!, and rotobreathers in an aniso
tropic ladder of Josephson junctions with injected ac c
rents. Though very briefly, we will also make some ment
to an example of discrete breather in a simple model
coupled Van der Pol oscillators. In Sec. II we discuss brie
the numerical procedures used to obtain accurate brea
solutions in both models, which are based on the contin
tion from the uncoupled limit of each model.

In Sec. III we explain some general features of the lin
stability ~Floquet! analysis of forced-damped periodic DB
Intended to be self-contained~to some extent!, this section
deals with both models, which due to some remarkable
ferences in the damping terms present some different
tures in their linear stability analysis. After deriving som
straightforward properties of the Floquet multipliers, we o
tain some formal conditions for the nonappearance of
tended instabilities of the uniformly oscillating backgroun
along with the tail analysis valid for not-too-large forcing.

In Sec. IV we review the phase diagrams of pinned~non-
mobile! DB in the Frenkel–Kontorova model and the J
sephson junction ladder. In both models we find differe
bifurcations experienced by the periodic DB. Interesting
some of these bifurcations produce nonperiodic types of
calized solutions, like quasiperiodic and chaotic discr
breathers. We have analyzed their behaviors with differ
techniques~Lyapunov exponents, Poincare´ sections, etc.!
which unambiguously confirm the localized character
those excitations.

In Sec. V we turn our attention to mobile DB, i.e., di
crete breathers propagating through the system. These
tations have been observed both in Hamiltonian and diss
tive systems. In this report, our focus is on the later case
particular on the forced-damped Frenkel–Kontorova~FK!
model. After some general remarks, we discuss the Peie
Nabarro barrier for mobile breathers. Then we recall so
recent results on mobile breathers in the FK model before
turn to the interaction of mobile discrete breathers in scat
ing processes. The most interesting outcome of a t
breather scattering process is a bound state. About t
states little is known so far. We present the results of a la
number of scattering processes, providing first insights i
the rich phenomenology of these mobile multibreather sta

II. MODELS AND NUMERICAL PROCEDURES

A. The Frenkel–Kontorova model

The Frenkel–Kontorova model of classical, harmo
cally coupled, atoms experiencing a substrate sinusoidal
tential, was introduced more than 60 years ago5 to study the
structure and dynamics of dislocations in metals. Along
subsequent decades it has become one of the most univ
models of nonlinear physics, often used to investigate
rather broad set of physical phenomena and systems
charge~or spin! density waves, adsorbed monolayers on s
faces, commensurate–incommensurate transitions, dry
tion, Josephson junction arrays, to name a few of them6,7
Downloaded 24 Oct 2003 to 155.210.16.42. Redistribution subject to AIP
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The equations of motion of the Frenkel–Kontorova cha
subject to damping and an~spatially uniform! external driv-
ing force are, in dimensionless form,

ü j1au̇ j1
1

2p
sin~2puj !5C~uj 1122uj1uj 21!

1Fac sin~vbt !. ~1!

In order to generate a DB configuration we start in the u
coupled limitC50, that is, we first consider the dynamics
a single forced and damped pendulum, and try to find a
gion of parameters where there are at least two differ
attractors~oscillations! coexisting. Note that, generically, a
oscillators have at least two attractors for sufficiently lo
values of the dampinga and the forceFac , if the frequency
vb of the force is not wildly different from the typical fre
quencies of the autonomous oscillator.

Therefore we initially choose values fora, Fac , andvb ,
and keep them fixed while we varyC. Then, for instance, we
fix one of the oscillators to the high amplitude solution a
all the others to the low one. Using as initial condition th
uncoupled configuration, we turn on adiabatically the co
pling parameterC. The initial solution can be continued fo
CÞ0 ~Refs. 2, 3! and it is assured that the continued soluti
is an attractor of the dynamics.4 Moreover, as one expect
that the basins of attraction evolve continuously withC as
well, if the variation inC is small enough, this initial condi-
tion is expected to evolve to the stable attractor, i.e.,
exact continued DB. This makes the numerical continuat
much simpler than in the case of Hamiltonian system
where expensive root-finding methods are needed
breather continuation.8

The numerical integration of equations of motion h
been done using a fourth-order Runge–Kutta method.
parameters that we have mostly used in the simulati
shown below area50.02,vb50.2p, andFac50.02. Simu-
lations for different values of the parameters were also p
formed, in order to confirm the general validity of our r
sults. Though not in a systematic manner, in some gen
cases we have added to the initial conditions a small rand
noise~typically of order 1025) to test for robustness. More
over, special care has been taken in dealing with finite s
effects. While for low values ofC (C,0.6) small lattice
sizes can be used~sayN540), once the breather is dresse
by a phonon tail~see Sec. III C!, one needs to increase th
lattice size~sometimes up toN5900) in order to avoid finite
size effects. Both, coupling to a noise source and finite s
effects are important issues on their own, not only from
simulational and theoretical point of view, since experime
in real dissipative systems are often done in small lattices9,10

which are in contact~both thermal and nonthermal! with a
variety of degrees of freedom.

B. The Josephson junction ladder

Rotobreathers are DB’s in which one~or more! central
oscillator rotates and the rest oscillate with decaying am
tude. The amplitude of tail oscillations decay to zero
Hamiltonian rotobreathers while for periodically forced sy
tems they decay to the uniformly oscillating solution of t
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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612 Chaos, Vol. 13, No. 2, 2003 Martı́nez et al.
forced and damped lattice. This kind of DB cannot exist
for example, the Frenkel–Kontorova model, for the coupl
energy between a rotating oscillator and its oscillating nei
bor would diverge quickly as time evolves. The coupli
term has clearly to be a bounded function of the varia
increment. But this is the case for many realistic models
condensed matter systems, like Heisenberg or XY class
spin models, where interactions are sinusoidal.

Rotobreathers were first numerically found by Take
and Peyrard,11 who also worked out approximate analytic
expressions12 for a Hamiltonian system of sinusoidall
coupled rotators. The existence proof of rotobreathers ca
said to be implicitly envisaged in the seminal work
Mackay and Aubry,1 and it was later explicitly considered i
Refs. 2 and 4.

A system where rotobreathers were predicted4,13 and,
indeed, experimentally observed9,10,14 is the anisotropic Jo-
sephson ladder, where two rows of superconducting isla
~see Fig. 1! are interconnected through vertical and horizo
tal Josephson junctions~each type having different junctio
characteristic parameters, subindexed byy and x below!.
Under the appropriate circumstances~see Refs. 13 and 15
for relevant details! the so-called resistively and capacitive
shunted junction~RCSJ! approximation provides an ex
cellent description of the array dynamics in terms of the
perconducting phasesu i ~and u i8) of the upper~and lower!
islands.

The equations of motion in the RCSJ framework are

ẍ i5Jx@sin~x i 112x i !cos~f i 112f i !1sin~x i 212x i !

3cos~f i 212f i !#1ex~ ẋ i 111ẋ i 2122ẋ i !, ~2!

f̈ i5Jx@cos~x i 112x i !sin~f i 112f i !1cos~x i 212x i !

3sin~f i 212f i !#1ex~ḟ i 111ḟ i 2122ḟ i !

2Jy sin~2f i !22eyḟ i2I ~ t !, ~3!

where x i5
1
2(u i1u i8) and f i5

1
2(u i2u i8), I (t)5I ac cos(vt)

is the uniform bias current,Jx,y are the Josephson coupling
~or critical currents! of junctions in the horizontal (x) and
vertical (y) links, andex,y incorporate the resistive effect
from the contribution of normal electrons in the~respectively
horizontal and vertical! junctions.

Equation~2! can be effectively decoupled from Eq.~3!
by choosing uniform initial conditions in the ‘‘center-o
mass’’ coordinates~i.e., x i and ẋ i independent ofi ). For

FIG. 1. Schematic picture of the Josephson junction ladder biased b
currents injected as shown.
Downloaded 24 Oct 2003 to 155.210.16.42. Redistribution subject to AIP
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these initial conditions, Eq.~2! has the solutionx i(t)5Vt
1b for all i , whereV andb can be chosen zero by a jud
cious choice of the uniform initial conditionsx i(0),ẋ i(0).
One can then focus attention on thef i variables~though not
exclusively, for one has to check for stability of th
x-homogeneous solution, see below!.

In order to generate the rotobreather solution, we lo
for values of the parameters (Jy ,ey ,I ac ,v) of the decoupled
pendulumf ~i.e., Jx5ex50) for which rotating and oscil-
lating attractors coexist. Then we fix one of the oscillators
the rotating solution and all the rest to the oscillating on
and keeping fixed (Jy ,ey ,I ac ,v) while varying Jx and ex ,
proceed to the continuation of the rotobreather solution.
argued in the previous subsection, adiabatic variation of
couplings and integration of the equations of motion~2! and
~3! is all that is needed, due to the attractor character of
rotobreather solution. Most of the results shown below w
computed forJy50.5 andey50.01, while the other param
eters were varied inside some adequate ranges of value
with the case in the previous subsection, both finite size
fects and robustness against small random noise were c
fully checked.

III. LINEAR STABILITY ANALYSIS

A. Floquet multipliers

Let us denote by$uj (t)% the periodic DB solution of the
Frenkel–Kontorova model~1! which is numerically contin-
ued from the uncoupled limit, and consider a small pertur
tion, $v j (t)%, with v j5uj1e j . After discarding terms which
are nonlinear ine j ~assumed to be small! one obtains the
linearized equations of motion around the DB solution,

ë j1aė j1cos~2puj~ t !!e j5C~e j 1122e j1e j 21!. ~4!

Note thatuj (t) are periodic functions of time of period
tb52p/vb , so that, for a system of sizeN, Eqs.~4! forms a
system ofN coupled linear differential equations with tim
periodic coefficients. If$e j (0),ė j (0)% denote a basis of ini-
tial conditions in the 2N-dimensional tangent space, th
monodromy~or Floquet! matrix F is obtained by integration
of the linearized Eq.~4! over a periodtb for each of the 2N
basis vectors,

S e j~ tb!

ė j~ tb! D5FS e j~0!

ė j~0! D • ~5!

The Floquet matrixF relates the small perturbations
t5tb to those att50; in other words,F is the matrix asso-
ciated to the~linear! tb-map of ~4!.

In a similar way, one obtains the linearized equatio
of motion around the ladder rotobreather solution$x i(t)
50,f i%,

dẍ i5Jx@cos~f i 112f i !~dx i 112dx i !1cos~f i 212f i !

3~dx i 212dx i !#1ex@dẋ i 111dẋ i 2122dẋ i #, ~6!

df̈ i5Jx@cos~f i 112f i !~df i 112df i !1cos~f i 212f i !

3~df i 212df i !#1ex@dḟ i 111dḟ i 2122dḟ i #

22Jy cos~2f i !df i22eydḟ i , ~7!

ac
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613Chaos, Vol. 13, No. 2, 2003 Dissipative discrete breathers
and by integration over a periodTb52p/vb54p/v of a
vector basis in the (4N-dimensional! tangent space

$dx i ,df i ,dẋ i ,dḟ i%, the Floquet matrixF is obtained,

$dx i ,df i ,dẋ i ,dḟ i% t5Tb

T 5F$dx i ,df i ,dẋ i ,dḟ i% t50
T . ~8!

The linear stability of the breather solution~either
$uj (t)% or $x i(t)50,f i(t)%) requires that all the eigenvalue
of the corresponding Floquet matrix~calledFloquet multipli-
ers! are inside the unit circle. The corresponding eigenv
tors are the directions along which the perturbations grow
decay with a rate given by the Floquet multipliers. SinceF is
real, if m is an eigenvalue ofF, its complex conjugatem̄ is
also an eigenvalue ofF.

For the case of the Frenkel–Kontorova model the F
quet spectrum has a special structure, whose details ar
vealed using the transformation~see Ref. 16!

e j~ t !5e2at/2h j~ t !, ~9!

which transforms the linear dissipative system of Eq.~4! into
a ~nonautonomous! Hamiltonian system of oscillators,

ḧ j2~a2/42cos~2puj~ t !!!h j5C~h j 1122h j1h j 21!. ~10!

The eigenvalues of the linear symplectictb-map of these
equations must come in pairs such that their product is un
Together with the fact that the map is real, one has these
known17 three possible cases:~i! pairs of complex conjugate
eigenvalues lying on the unit circle, withl15l̄2 ; ~ii ! pairs
lying on the real axis, withl151/l2 ; ~iii ! 4-tuples of eigen-
values withl151/l25l̄351/l̄4 . Note that the transforma
tion ~9! scales the eigenvalues by a factor exp@2atb/2#, and
thus the Floquet multipliers of~4! must either lie on a circle
of radius exp(2atb/2), with m15m̄2 , or on the real axis such
that m1m25exp(2atb), or come as 4-tuples such thatm1

5m̄3 , m25m̄4 , m15exp(2atb)/m̄4.
On the contrary, the Floquet spectrum of the ladder

tobreather does not have such ‘‘almost-symplectic’’ structu
because of the damping terms in the form of~discrete! Lapla-
cians of the velocities which appear in the linearized Eqs.~6!
and~7!. This type of damping term, sometimes referred to
‘‘phonon damping,’’ imposes different decaying time sca
to normal modes of different wave vector~see next subsec
tion!, thus producing a more scattered structure of Floq
multipliers in the complex plane.

B. Extended instabilities

In the limit of an infinite system (N→`), the Floquet
spectrum of a breather consists of a continuous part ass
ated with spatially extended eigenvectors and a discrete
associated with spatially localized eigenvectors. Marı´n and
Aubry18 have argued that the continuous part of the spect
of F is the continuous spectrum of the Floquet matrixF0 of
the linearized problem around the homogeneous solu
~i.e., without breather! $uj (t)%5$u`(t)% ~FK model! or
$x i(t)50,f i(t)%5$0,f`(t)% ~Josephson ladder!.

First, we consider the spectrum ofF0 for the Frenkel–
Kontorova model. Under the usual periodic boundary con
tions, we look for solutions of the linear problem with th
plane-wave formh j (t)5eiq jhq(t). Denoting simply by
Downloaded 24 Oct 2003 to 155.210.16.42. Redistribution subject to AIP
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f (t)5cos(2pu`(t)), and E(q)54C sin2(q/2)2a2/4, we ob-
tain for each spatial Fourier coefficienthq(t) the equation

ḧq~ t !1~E~q!1 f ~ t !!hq~ t !50. ~11!

This is a Hill equation. For each solutionhq(t) of the
single Hill equation~11! we have a solution of the form,

e j~ t !5eiq je2at/2hq~ t ! ~12!

for the linearized problem. The Hill equation~11! has a gen-
eral solution which can be expressed in terms of itsnormal
solutions, which have the property,

hq~ t12p/vb!5lqhq~ t !, ~13!

wherelq is called the characteristic number of the equatio
The complex numberrq defined aslq5exp(2prq /vb) is
called characteristic exponent~its imaginary part being de
fined up to an additive multiple ofvb). In the generic case in
which Eq. ~11! has two different characteristic numbe
lq

1 ,lq
2 , their product is equal to unity,lq

1lq
251, and the

general solution has the form

hq~ t !5c1erq
1tcq

1~ t !1c2erq
2tcq

2~ t !, ~14!

where c1 ,c2 are constants andcq
1 ,cq

2 are time periodic
functions with period 2p/vb . Consequently,hq(t) is
bounded byK exp(rq

maxt), with K some constant, andrq
max

5max$rq
1 ,rq

2%. Thus, from Eq.~12!, we conclude that the
stability of the homogeneous solution$u`(t)% is assured in
the parameter region in which

rsup5sup
q

rq
max,a/2. ~15!

The determination of this region in parameter space
only be done by numerical means. For the range of par
eters that we have used in our studies, the functionf (t) is a
low amplitude oscillation around the value 1, and, as
pected from the well-known results on weakly time depe
dent Hill equations, we have not observed instabilities
extended modes.

Now we consider the spectrum ofF0 for the ladder. The
linearized equations of motion around the homogeneous
lution are, for the$dx j ,dẋ j% components,

dẍ j5JxDdx j1exDdẋ j , ~16!

whereD denotes the discrete Laplacian. Fourier transform
tion gives

dẍq~ t !524Jx sin2S q

2D dxq~ t !24ex sin2S q

2D dẋq~ t !

~17!

so that each Fourier componentdxq is a linear damped os
cillator ~with damping coefficient dependent on wave nu
ber q), and we conclude thatno extended instabilities in the
x components can occur.

Regarding the linearized equations for the$df j ,dḟ j%
components,

df̈ j5JxDdf j1exDdḟ j22Jy cos~2f`~ t !!df j22eydḟ j
~18!
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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one can proceed in the following way: First, a transformat
similar to ~9!, that isdf j5exp(eyt)gj , followed by the Fou-
rier transformationg j5exp(iqj)gq, lead to a damped Hill
equation,

g̈q1@E~q!1 f ~ t !#gq14ex sin2S q

2D ġq50, ~19!

where E(q)54(Jx2exey)sin2(q/2)2ey
2 and f (t)

52Jy cos(2f`(t)).
Now, if Ẽ(q)5E(q)24ex

2 sin4(q/2), the final transfor-
mationgq5exp((22ex sin2(q/2))t)nq leads to a Hamiltonian
Hill equation,

n̈q1@Ẽ~q!1 f ~ t !#nq50 ~20!

for the transformed variablesnq, which are related to the
initial df j through

df j~ t !5eiq je2(ey12ex sin2(q/2))tnq~ t !. ~21!

Denoting byrq
max the maximum of the two characterist

exponents of the Hill equation~20!, one obtains the follow-
ing condition:

rq
max,ey12ex sin2S q

2D for all q ~22!

for the stability of the homogeneous solution of the ladde

C. Tail analysis

In the forced and damped systems of nonlinear osc
tors that we are analyzing, the ‘‘background’’ uniform sta
which is approached by the DB solution far from its loca
ization center,$u`(t)% ~FK model! or $0,f`(t)% ~Josephson
ladder!, is not a rest state, but a uniform oscillation. In th
section, we will assume that these oscillations have a v
small amplitude, so that we can discard in the linearized E
~4! and ~7! terms of orders higher than linear inu`(t) and
f`(t), respectively. This amounts to neglect, for the loc
ization center, for the time dependence of the correspond
coefficient in the linearized Eqs.~4! and ~7!. This approxi-
mation, which is valid for not too large values of the para
eterFac , simplifies matters for we are left with the standa
problem of a linear chain with damping, which can be e
actly solved~see also Ref. 19!.

We consider first the linearized equations~4! of motion
around the DB in the Frenkel–Kontorova model. Under
previous assumption, foru j u@1 the coefficient cos(2puj(t))
is thus set to unity, if one discards terms less than or equa
u`

2 (t). Now we consider a semi-infinite chain with th
boundary condition at the edge given bye0(t)5exp(2ivt),
and look for solutions of~4! of the form

e j~ t !5e(2j1 iq) je2 ivt. ~23!

After insertion of ~23! into Eq. ~4! one obtains for the
real and imaginary part, respectively,

coshj cosq511
1

2C
~12v2!, ~24!
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2C
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These algebraic nonlinear equations have to be so
for q(v) andj~v! assuming fixed values of dissipationa and
couplingC. The familiar dispersion relation for the extende
normal mode solutions~phonon band! of the discrete Hamil-
tonian lattice,

v25114C sin2~q/2!, ~26!

j50, ~27!

along with nonzero inverse decay lengthj~v! given by

v25124C sinh2~j/2!, ~28!

v25114C cosh2~j/2!, ~29!

for values ofv, respectively, below and above the phon
band, are obtained in the Hamiltonian (a50) case. Only
small oscillations with frequency in the band, i.e.,vP@1,1
14C#, are extended (j50). Small oscillations with fre-
quency outside the phonon band are damped out far from
edge of the semi-infinite chain, that is to say, they are ex
nentially localized. This serves to illustrate how the Ham
tonian breather needs to have all breather harmonicsnvb out
of the phonon band, so that the small oscillations associa
to these frequencies decay exponentially with the charac
istic length j21(nvb), and the size of the Hamiltonian
breather isjb

215supn j21(nvb).
When aÞ0, we have thatj(v)Þ0. Thus, any solution

decays exponentially. An example of the solutionsj~v! and
q(v) of Eqs. ~24! and ~25!, for the particular valuesa
50.02 andC50.75, appears in Fig. 2. For purposes of co
parison, the graphs corresponding to the same value of
pling for the Hamiltonian case are included.

Note that for the existence of damped-forced discr
breathers there is no need of a nonresonance condition~in
contrast with the Hamiltonian case!, because for any fre-
quencyv, j(v)Þ0. However, for low values ofa, if some
breather harmonicnvb belongs to the interval of values ofv
for which j~v! is very small, the breather profile will show
large ‘‘wings.’’

For the Josephson ladder, under the assumption
cos(2f`(t)).1, the tail analysis leads to

v22~2ex sinhj sinq!v12Jx coshj cosq22Jx22Jy50,
~30!

~2ex coshj cosq22ex22ey!v12Jx sinhj sinq50. ~31!

The dispersion relation for the Hamiltonian ladder is

v252Jy12Jx~12cosq! ~32!

and the phonon band is restricted to

vmin5A2Jy<v<A4Jx12Jy5vmax. ~33!

Outside this phonon band,j is equal to

j5cosh21
2~Jx1Jy!2v2

2Jx
if v<vmin , ~34!
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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j5cosh21
22~Jx1Jy!1v2

2Jx
if v>vmin . ~35!

An example of the solutionsj~v! andq(v) of Eqs.~30! and
~31! for the valuesJy50.5,Jx50.1,ex5ey50.01 appears in
Fig. 3 where the Hamiltonian (ex5ey50) results are also
shown. Comparing it to Fig. 2 for the Frenkel–Kontoro
model, one can realize how the ‘‘Laplacian damping’’ has
strong qualitative effect on the graph ofq(v) for high values
of v.

As shown in the upper panel, for frequencies above
normal mode ones, it is not possible to reach the wave ve
q5p when the system is dissipative. That means that
‘‘antiferro-like’’ linear mode is allowed for this system. Als
for low v there are two values withq50 ~or ‘‘ferro-like’’
mode in this language!: the first is trivial, v50, and the
second one isv5A2Jy22Jxey /ex.

IV. BIFURCATIONS

In this section we will review the rich phase diagram
pinned~nonmobile! dissipative DB’s in the two models un
der scrutiny: oscillobreather solutions in the Frenke
Kontorova model, and rotobreathers in the Josephson ju
tion ladder. To face this task we adopt the well-know
method of continuation from the anticontinuous limit. As a
ready mentioned in previous sections, a dissipative sys
has some advantages over a Hamiltonian one when it co
to finding good numerical solutions of the equations of m
tion. Methods in Hamiltonian systems are based on New

FIG. 2. Tail analysis of dissipative DB’s in the Frenkel–Kontorova mod
Wave vectorq and inverse of the decay lengthj as functions ofv for two
different values of the damping,a50.02~open circles! and the Hamiltonian
casea50.0 ~filled ones!. The coupling parameterC is in both cases equa
to 0.75.
Downloaded 24 Oct 2003 to 155.210.16.42. Redistribution subject to AIP
a

e
or
o

c-

m
es
-
n

~or shooting! schemes to solve the equations of the stro
scopic maps. This requires a careful computation of
equations of motion in both nonlinear and linear approxim
tion, besides some tricks to avoid time and energy transla
degeneracies. However, in dissipative systems, breather
real attractors of the dynamics and we can forget most of
cautions one has to take in the Hamiltonian case.

Several auxiliary quantities have been computed in or
to characterize completely the solutions:

~i! For periodic DB, the spectrum of Floquet multiplie
was numerically computed for each solution, th
monitoring their evolution on the complex plane. Th
allows us to follow the linear stability of periodic at
tractors, locate the bifurcation points where straig
forward continuation stops, and characterize a
equately the type of bifurcations.

~ii ! Poincare´ ~stroboscopic! sections of the numerical so
lutions. This is particularly convenient when dealin
with nonperiodic DB’s which~as will be seen below!
often emanate from some bifurcations found in t
continuation path.

~iii ! The power spectrum of quasiperiodic and chaotic
lutions. This is defined by

S~v!5UE
2`

`

ẋj~t!e
ivtdtU2, ~36!

whereẋ j (t) denotes eitheru̇ j (t) or ḟ j (t), depending of the
model under consideration. Note that we use velocities

.

FIG. 3. Tail analysis for a rotobreather in a Josephson junction ladder. W
vectorq and inverse decay lengthj as functions ofv for the ladder param-
eters (Jy50.5,Jx50.1,ex5ey50.01). For the latter, and outside the ‘‘pho
non band,’’ the Hamiltonian and dissipative solutions almost overlap in s
of the differences between both cases shown in theq variable.
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stead of angles or positions for computational convenien
in particular when rotations of some variable occur, as
Sec. IV B.

A. Oscillobreathers in the FK model

We summarize here the numerical findings reported
Ref. 20 on the evolution of the properties of continued DB
when the coupling parameter is adiabatically increased f
C50. Let us note that both the 1-site and the 2-sites perio
continued DB’s are mirror-symmetric around the localizati
site and bond, respectively. Both were found to be conti
able until very high values ofC, where the continuum limit
is approached. However along the continuation path we h
found many bifurcation~or branching! points where severa
branches of qualitatively different breather solutions me
The bifurcations observed are of two general classes, nam
pitchfork andNaimark–Sackerbifurcations.

1. Pitchfork bifurcations

At one side of the bifurcation point, a branch of mirro
symmetric stable periodic DB exists, while at the other s
two stable branches of periodic mirror-asymmetric DB’s a
an unstable branch of periodic symmetric DB’s meet. T
Floquet spectrum of the stable symmetric DB shows tha
eigenvalue approaches11 at the bifurcation point, exiting
the unit circle past the bifurcation on the unstable D
branch. The eigenvector associated to this instability is a
symmetric and exponentially localized. The two stab
branches correspond to two asymmetric DB’s, one being
mirror image of the other. These pitchfork bifurcations a
thus ~mirror-! symmetry-breaking transitions of the period
DB’s.

Figure 4 shows the branching~or bifurcation! diagram
for 0.5,C,0.6 at fixed values of the rest of parameters.
this range ofC values, two pitchfork bifurcations occur a
CP1.0.52962 andCP2.0.55315 Note that forC,CP1 the
1-site DB is stable while the 2-sites is unstable, and that
C.CP2 the situation has been reverted. ForCP1,C,CP2,

FIG. 4. Scheme showing the pitchfork bifurcations~mirror symmetry
breaking transition! of the pinned periodic discrete breathers in the F
model when the coupling parameter (C) increases. The asymmetry chara
ter is measured byX ~see text!. Solid ~dashed! lines mean stable~unstable!
solutions.
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the broken symmetry DB’s form the stable branches, and
symmetric branches are linearly unstable.

The breaking of the left-right symmetry renders mea
ingful the concept ofcenter Xof the breather as a continuou
variable. This concept, certainly alien to the ancestral a
continuous origin of the~1-site and 2-sites! continued DB’s,
serves to measure quantitatively the degree of asymmetr
the solutions on the asymmetric stable branches. The v
ableX is like a sort of ‘‘order parameter’’ associated with th
symmetry-breaking transitions atCP1 andCP2, or better said,
is a collective variable, i.e., the average value~over compo-
nents! of some functionf on the solution, measuring it
asymmetry. This value can be chosen to be the integer for
1-site DB ~now better calledsite-centeredDB! and half-
integer for the 2-sites DB~or bond-centeredDB!. This mea-
sureX of the asymmetry is then naturally interpreted as
center of the static breather. Collective variables of this ty
are commonly used to describe mobile localized exc
tions21,22 though hereX is purely motivated by symmetry
considerations.

The connection of the pitchfork bifurcations likeCP1 and
CP2 to the issue of breather mobility is not limited to th
emergence of the collective variableX as important breathe
descriptor. It turns out that the Floquet mode driving t
bifurcation~symmetry-breaking mode!, when added as a per
turbation ~of large enough amplitude! to the static stable
DB’s drives easily the system towards stable attaccting m
bile breathers. This procedure to obtain numerical appro
mations to mobile breathers by perturbing static ones w
antisymmetric modes was used in Hamiltonian models s
porting DB’s.23,24The termdepinning modewas then coined
to name these modes, butsymmetry-breakingmodes is an
equally correct term, as mobility requires~at some level! the
breaking of the left–right symmetry by the mobile solutio

Pairs of pitchfork bifurcations with a branching diagra
as shown in Fig. 4, occurs repeatedly whenC increases, as a
‘‘broadening mechanism’’ by which the DB’s width growths
The Floquet eigenvalue associated to the symmetry-brea
bifurcations remains closer and closer to11 at all times,
announcing the appearance of a Goldstone mode~due to con-
tinuous translational invariance! asC→`. This was ostensi-
bly manifest atC*5.

2. Naimark –Sacker bifurcations

Also known asgeneralized Hopf bifurcationsor Hopf
bifurcations of periodic solutions. At the bifurcation point,
two complex conjugate Floquet multipliers of the period
continued DB cross the unit circle at exp(6iw), with wÞ0,
and the periodic breather becomes unstable. In the simp
case, called supercritical, a two-frequency (vb andwvb/2p)
stable quasiperiodic DB borns out of the bifurcation. In t
subcritical case, an unstable quasiperiodic attractor me
with the stable periodic DB. We have observed both subc
cal and supercritical Naimark–Sacker bifurcations.

Figure 5 shows an example of a stable 2-site quasip
odic DB. The power spectrum for one of the particles in t
breather core shows peaks at linear integer combination
two basic frequencies. Though the lack of periodicity
these solutions prevents the use of Floquet analysis to s
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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their stability, the attracting character of this quasiperio
DB can be numerically ascertained, checking its robustn
against small perturbations. We have to emphasize here
strong sense of stability that these quasiperiodic soluti
satisfy: They are attractors of the dynamics, possessing
open set~basin of attraction! of initial conditions asymptoti-
cally converging to the DB. The inspection of figure reve
that an adequate description of this DB in terms of the c
lective variable X is that of a breather oscillating in
~Peierls–Nabarro-type! potential well. From this perspective
the Neimark–Sacker bifurcation would be an instability
the ‘‘constantX’’ pinned breather, leading to an ‘‘oscillating
X’’ pinned breather. Another suggestive description of t
quasiperiodic DB is to look at it as a ‘‘beating solution’’ fo
the two central oscillations.

The example shown in figure belongs to a stable bra
of quasiperiodic DB. This branch has an interval of instab
ity (0.88,C,0.96) where the breather spontaneou
moves. No pinned~periodic or quasiperiodic! stable DB ex-
ists in that parameter interval: Only mobile breathers oc
for that ~relatively narrow! range of coupling. These mobil
breathers are not continuation of the mobile breathers
duced by perturbing static DB’s with symmetry-breaki
modes, but seem to born out straight from the destabiliza
of quasiperiodic pinned DB. No stable pinned breather co
ists anymore within this interval with mobile attractin
breathers.

B. Rotobreathers in the Josephson ladder

Here we summarize the main features of the phase
gram of rotobreather solutions in the anisotropic Joseph

FIG. 5. Two-site quasiperiodic oscillobreather in the Frenkel–Kontor
model. Note that particles on both sides of the breather are out of phase
figure below shows the power spectrum of one of the central particles.
peaks are linear combinations of the two frequencies.
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junction ladder previously studied in Ref. 25. As in th
Frenkel–Kontorova model analyzed in the previous subs
tion, we have found several different bifurcations. Moreov
due to the existence of more tunable parameters and the
that we have now two variables~f,x! per site, the complex-
ity of different scenarios is correspondingly greater than
the Frenkel–Kontorova model. In what follows we descri
some of them. First, we must remark that the tool used
describing the nature of the bifurcations is Floquet analy
~see Sec. III A! and therefore we are restricted to period
rotobreathers. Moreover, along this section the initial ro
breather we use is uniformly zero inx variables~see Sec.
II B ! and exponentially localized inf’s.

As it is a nonexhaustive exploration we keep fixed so
of the parameters (Jy50.5, ey50.01,v51.5! while varying
the others (Jx , ex , I ac). Prior to the detailed description o
each observed bifurcation we summarize them in Fig. 6.

The first observed bifurcation was found when the J
sephson horizontal coupling (Jx) increases above value
aroundJx;0.105. The associated Floquet multiplier leav
the unit circle at21 and the corresponding eigenvector h
zero components alongdf i anddḟ i and nonzero alongdx i

anddẋ i . This destabilizing mode is exponentially localize
around the center of the rotobreather solution~the study done
in Sec. III B shows that no extended instabilities can occu
the initially uniform x components of the breather!. The ab-
sence of an on-site pinning potential term in the equation
motion ~3! makes the new localization length scale in thex
variables much larger than in thef ones. Other characteris
tics of the new oscillox-breather are spatial symmetry, a
almost ‘‘antiferro-like’’ profile and a time period twice th
period of the~f! rotobreather. This instability is almost in
sensitive to changes in the parametersI ac andex ~see panel a
in Fig. 6!. Extending the study but now to the new combin
f-x-breather arising from the bifurcation shows that it on
survives a small increase inJx before it becomes unstabl
and disappears.

A second type of instability occurs when the current
tensityI ac is increased, while keeping fixedJx andex . Here
the Floquet multiplier that drives the instability proce
leaves the unit circle through21. The associated eigenvecto
has zero components alongdx and dẋ i and nonzero in the
f’s. Again, as in the previous case, the profile of the eig
vector is localized around the breather center. The new r
breather obtained after perturbing the initial one along
eigenvector direction has twice the period than the one
fore the bifurcation, so the instability is a typical perio
doubling bifurcation. Beyond the first one either further p
riod doubling processes occur or an inverse period doub
can appear sometimes to bring the rotobreather solution b
to the previous period.

A third type of bifurcation destabilizing the rotobreath
is generally found when the parameterex is increased. Here
the Floquet multiplier leaves the unit circle at11. The asso-
ciated eigenvector is also localized inf’s and null inx’s with
a localization width of the order of that of the initial roto
breather. Perturbing along the eigenvector brings it into
basin of attraction of the uniformly oscillating solution. It
likely a saddle-node bifurcation. Theex value at which the
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bifurcation occurs increases with increasing current inten
I ac @see panel~c! in Fig. 6#, a fact which agrees with the
simple physical intuition that the effects of both paramet
on the central rotatingf j (t) oppose each other.

We have shown here how the many parameters of
model besides the two variables per site increase the c
plexity of possible bifurcations. We could also make var
tions in the other three parameters kept fixed in this work
other possible scenarios could arise. Actually, in the n

FIG. 6. Two-dimensional sections of the three-dimensional (Jx , ex , I ac)
explored parameter space of the JJ ladder. The different lines are the
tiers where a given instability is observed in the Floquet analysis of
periodic rotobreather. Widely dotted lines correspond to period doub
bifurcations~only the first one is shown for the sake of clarity, but a seco
third, etc., can occur!. Broken lines representx-instability bifurcations, and
continuous lines indicate saddle-node bifurcations. Tightly-dotted stra
lines in each plane are the corresponding intersections with the other pl
The pointsA, B, C, andD are indicated to ease 3D mental reconstruction.
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section we analyze another interesting case when the pa
eter that we change adiabatically isv.

C. Chaobreathers

One of the more interesting features found in the bif
cation analysis of rotobreathers in the anisotropic Joseph
junction ladder biased by external currents, was the existe
of chaotic rotobreather solutions,26 where the ‘‘degree’’ of
chaoticity is also exponentially localized in space~Fig. 7!.

The discovery was made when varyingv continuously
and keeping fixedJx50.05, Jy50.5, ex50.03, ey50.01,
I ac50.72. Around the valuev51.623 a subharmonic cas
cade of period doubling bifurcations transforms the init
exponentially localized periodic rotobreather into an a
exponentially localized but chaotic rotobreather. This ca
looks like the period doubling bifurcations observed wh
the external current is increased~see previous subsection!
but in that case a complete subharmonic cascade was n
detected.

To analyze the chaotic character of the rotobreather
lution one can compute numerically the spectrum
Lyapunov exponents and obtain the Lyapunov dimension

Arguments about the genericity of the existence of c
otic breathers in other nonlinear systems were given in R
26 and also numerically confirmed in a chain of harmo
cally coupled and forced van der Pol oscillators,

f̈ i52m~f i
221!ḟ i2f i1b cosvt1C~f i 1122f i1f i 21!.

~37!

It was easy to find in the literature27 the parameter region
where three different attractors coexist for the single forc
and damped van der Pol oscillator, two of them chaotic a
the other periodic. The continuation method allowed us
follow the evolution of a chaotic breather-like uncoupled s
lution ~the central oscillator in one of the strange attract
and the rest of the chain in the periodic one! up to coupling
strengths significantly different from zero while preservi
the chaotic nature. Another example of chaotic rotobreath
is reported in Ref. 28, where a 1D driven damped lattice of
dipoles was studied.

Although this numerical evidence provides strong su
port for the existence of chaotic DB in generic forced a
damped lattices of nonlinear oscillators, a rigorous proof
existence has been sketched29 only under strong mathemati
cal conditions~uniform hyperbolicity!, which usually are not
satisfied in realistic physical models.

Chaotic mobile DB have been observed numerically
long-lived transients in Hamiltonian systems, but exa
Hamiltonian chaotic DB could not exist, due to the ‘‘broa
band’’ structure of the power spectrum of chaotic trajectori
which would violate the nonresonance condition.

V. MOBILE AND INTERACTING BREATHERS

A. General remarks

In the previous section we have shown how diverse n
properties~e.g., mirror asymmetry, quasiperiodicity, chao!
appear as characteristics of some branches of attracting
crete breathers that emerge from the diverse bifurcations

n-
e
g
,

ht
es.
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



-
s

-
-

619Chaos, Vol. 13, No. 2, 2003 Dissipative discrete breathers
FIG. 7. Poincare´ sections of the trajec-
tories f i(t) at times t1n2Tb , for
three different oscillators of the chao
breather in the JJ ladder. The picture

show the planesḟ ~in radians per unit
time! versusf ~in radians! for the ro-
tor ~a!, its fifth neighbor~b! and the
ninth one~c!. Notice the very different
scales of~b! and~c! in order to see the
spatial localization of the chaotic con
tribution to the dynamics of each os
cillator.
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finds along the continuation path numerically followed. A
other property of some attracting branches of breather s
tions ismobility. We have already remarked~from pure sym-
metry considerations! the convenience, as quantitativ
descriptor of the breather, of using a collective variableX
real and continuous, which is naturally interpreted as ce
of the localization of energy. Mobile breathers are solutio
where the average value of the breather centerX unbound-
edly increases~or decreases! as time goes by.

Observations ofmoving breather-like excitations hav
been made both in Hamiltonian23,24 and dissipative sys
tems.20 Contrary to the case of pinned breathers, there is
present, no exact proof of existence for mobile breath
~MBs!, i.e., breathers exhibiting translatory motion. How
ever, the observed excitations appear to be quite stabl
simulations, and in the case of the dissipative and dri
Frenkel–Kontorova model~1! numerically have been foun
to be attractors of the dynamics.20 The most typical type of
pinned breather is a periodic solution of the equations
motion. For a MB with a translation velocityvbÞ0, strict
periodicity is possible if the system itself is a ring of sizeL
and the timeT5L/vb required by the breather to trave
round the ring once is related to its internal periodTb

52p/vb by mT5nTb , where m,n are integers~another
possibility would be that the breather is reflected twice fro
the opposite ends of a finite chain, and the above consi
ations can be reinterpreted accordingly!. As often one prefers
to think of the system as an infinite chain rather than a fin
size ring and because requirements on the system’s size
that above may be considered as too restrictive, periodi
can be taken as periodicity up to integer position shifts~we
consider a lattice of periodicity 1!. This requiresvbTb

5m/n, with m,n as integers.30 In the following we will not
restrict our discussion to such ‘‘periodic’’ solutions an
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consider a MB to be a solution with an internal degree
freedom ~oscillation or rotation! that propagates along
the system.21 The internal degree of freedom need not
periodic, but can have a spectrum of incommensur
frequencies.

The oscillations of the internal degree of freedom c
generate phonons in the system. As for the relation betw
the frequencies of the phonons and the frequency or frequ
cies of the breather, it has to be taken into account tha
~angular! frequency v0 in the restframe of the MB is
Doppler-shifted due to the translatory motion of the breath
according to

v~q!5v01vbq. ~38!

Hereq is the wave vector in the restframe of the chain, a
v is the frequency observed in this frame. Depending on
complexity of the dispersion relationv(q), a numerical so-
lution of ~38! can be called for. Note that everyv0 leads to
two frequenciesv(q1) and v(q2), one for emission in the
direction of the propagation, one for the opposite directio
for higher dimensional systems things can be more com
cated, as there are infinitely many intermediate directio
Another point to be taken into account is that the propaga
at velocityvb of the MB along a system of periodicity 1~the
rescaled lattice constant! constitutes a perturbation of fre
quency 2pvb as seen in the MB restframe. Due to the no
linearity of the system, combination frequenciesmvb

1n2pvb , m,n integer, can be created, which then are a
Doppler-shifted. Many phenomena of the dynamics of so
tary waves successfully have been described within a col
tive variable approach, e.g., Refs. 22, 31, and 32. This
proximation aims at capturing the main features of t
dynamics of a large~or infinite! number of degrees of free
dom, those of the constituents of the system, by the dyn
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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ics of considerably fewer variables that are appropriate fo
collective description of the solitary excitation. The most im
portant example of a collective variable is the position o
solitary wave, other examples can for instance be found
Ref. 33. There exist different ways of introducing collecti
variables, but typically integrations over functions that d
scribe the shape of a solitary wave are involved. As t
shape does not explicitly depend on time, but only on
collective variables, one eventually arrives at equations
the collective variables where all reference to the time
pendence of the constituents of the system has disappe
Thus only the collective variables remain as dynamical qu
tities; this usually is a great simplification. For breathers,
the other hand, the explicit time dependence of the shape
distinguishing feature and a standard collective varia
treatment is problematic: The collective variable equatio
explicitly contain time. This time dependence stems from
constituents of the system and requires that the time de
dence of the breather solution is known. So, usually, a
simplification is not possible. Recently, a different type
collective variable technique has been presented for bre
ers in Hamiltonian systems:21 Breather solutions are consid
ered as loops in phase space. The loops are characteriz
a set of parametersm that play the role of collective vari
ables. The dynamics in phase space is tranferred to a dyn
ics in the space of loops by averaging over one period o
loop. As an approximation, the dynamics in loop space
considered to be sufficiently well described by the time e
lution of the parametersm. The last step corresponds to th
reduction of the dynamics of a solitary wave bearing syst
to the dynamics of the collective variables describing
solitary wave.

B. Peierls–Nabarro barrier

The notion of the Peierls–Nabarro barrier of a localiz
excitation arises naturally when mobile localized excitatio
are studied indiscretesystems. It is associated with the lac
of continuous translational invariance, the symmetry gro
of translations being discrete. If we consider a solitary ex
tation, the part of the energy not associated with kinetic
ergy of translation can depend on the positionX of the soli-
tary excitation. Recording this part of the energy as
function of X while moving the excitation from one lattic
site to the next usually results in a nonconstant graph.
difference between the maximum and the minimum of t
curve can be considered as the Peierls–Nabarro barrier,
the minimum energy necessary for shifting the excitat
from one site to the next. If the total energy of the excitati
is below this barrier, i.e., if the kinetic energy is too sma
then the excitation is trapped at one site and cannot tr
through the system. The height~and shape! of the barrier
depends on the shape of the solitary wave. In the case
breather, this shape is subject to~quasi!periodic oscillations,
so the energy barrier the breather has to cross in order to
from one lattice site to the next depends on the internal
grees of freedom of the breather. A more elaborate discus
can be found in Ref. 34. Whereas it is therefore not poss
to define a Peierls–Nabarro potential for breathers in a w
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completely analogous to the definition of this potential in t
case of ‘‘simple’’~i.e., without additional internal degrees o
freedom! solitary waves, related quantities can be intr
duced, for example, a depinning energy. The Floquet-ma
of certain breathers possesses localized eigenvectors$en(t)%
corresponding to spatially antisymmetric internal mod
These modes have been used to turn a pinned breather i
mobile one. Following Ref. 24 the optimal way to do th
uses only the velocity parts of this mode: If$un(t)% denotes
the breather configuration, the perturbed initial configurat
is obtained as

un
per~ t50,l!5un~0!, u̇n

per~ t50,l!5u̇n~0!1lėn~0!.
~39!

Note that in this case, by the choice oft50, the internal
degrees of freedom are fixed to a certain ‘‘phase’’ at
instant of the perturbation. A minimal magnitudelc of the
perturbation is necessary in order to initiate translatory m
tion of a breather. The velocity of the thus generated M
depends onl2lc for the Hamiltonian system. It has bee
proposed23 to use the thresholdlc as a means to define
Peierls–Nabarro potential barrier for moving discrete brea
ers. If, in ~39!, $un(0)% is chosen as a breather configurati
at an instant of its internal motion where all particle velo
ties u̇n50, and if the vector (0,ė(0)), the0 representing the
vanishing elongation part of the perturbing vector, is norm
ized, then indeed the energy of the perturbation is1

2l
2, and

correspondingly1
2lc

2 can be interpreted as an energy barr
to be overcome in order to excite a nonzero translation
locity of the breather and therefore as a depinning energ

A different way of introducing the concept of a Peierls
Nabarro potential can be found in Ref. 31. There, as m
tioned in the previous section, the dynamics is described
dynamics in a space of loops, where the internal degree
freedom are averaged out. At the level of the averaged
namics, a Peierls–Nabarro potential can be introduced
well-defined way. The interested reader will find in Ref. 35
tutorial introduction to these ideas for Hamiltonian system

Our focus here is on forced-damped discrete breath
and it is important to realize the formal and conceptual d
ferences this makes regarding the notions of the Peierls
tential and depinning energy. In a periodic solution, an ex
balance of input power~by the external forcing! and dissi-
pated power is kept over a period of timetb , and instead of
energy conservation, only power balance holds. Moreo
the stroboscopic section of the phase space is partitione
basins of attraction, and the structure of basin boundar
can be seen as a net of barriers to dynamics. Pinned per
discrete breathers are fixed points of the stroboscopic m
while the sections of attractor mobile breather trajectories
~generally! expected to fill a continuous line for noncom
mensurate velocities.

A simple scenario, that occurs for the forced and damp
FK model in some ranges of couplings, is sketched in Fig
There, a sequence of alternating attractor-saddle~stable-
unstable! pinned breathers located at positio
...,X1 ,X1* ,X2 ,X2* ,... coexist with a stable attractingX̃(t)
mobile discrete breather solution. Certain directio
$en ,ėn%5ue& in the tangent space of an attracting pinn
 license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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621Chaos, Vol. 13, No. 2, 2003 Dissipative discrete breathers
solution~like X1 in Fig. 8! bring this into the basin of attrac
tion B(X̃(t)) of the mobile breather$X̃(t)%, i.e., $X1%
1lue&PB(X̃(t)) for somel. Let us calllc(ue&) the mini-
mal strength~in the ue& direction! to turn the pinned solution
into mobile, and then definelc* as the infe lc(ue&). This
quantity, measuring the ‘‘shortest’’ distance from the pinn
breather to the basin of mobility, is the dissipative count
part of the quantitylc defined in the previous paragraph, i.e
the threshold strength of a depinning perturbation. As bef
it could generally depend on the choice of time~modulo tb)
of the stroboscopic section. On the other hand, ifE(X1) and
E(X1* ) denote some potential energy~not including the ki-
netic energy of the breather translation! associated withX1

andX1* ~pinned attractor and saddle, respectively! one could
arguably define the Peierls–Nabarro barrier for breat
shifts asE(X1* )2E(X1), but the use of it has to be connecte
to the power balance governing the dynamics.

Other different scenarios are possible. Notably, as
scribed in Sec. IV A, we have observed the situation
which no stable pinned breather solutions exist, but only r
ning stable DB solutions are found. None of the previo
quantities seem to make much sense in terms of utility
this situation when no reference stable pinned solution
available.

C. Mobile breathers in the dissipative and driven FK
model

As mentioned above, in this model mobile breathers
exist as attractors of the dynamics. In Fig. 9, taken from R
20, the velocity for the MBs is shown as a function of t
coupling C. The other parameters have beena50.02,
v50.2p, andFac50.02. There exists two types of MB tha
are clearly distinguishable by the range of their velociti
The faster breathers, found for 0.5,C,0.56 and 0.7,C
,0.88 have been created by perturbing a pinned brea
according to~39!. These breathers are therefore calledin-
duced fast breathers. It is this procedure, and the eigenvect

FIG. 8. Simple scheme of alternating stable–unstable pinned breathers
their basins of attraction~whose boundaries are dashed lines!, coexisting
with a mobile breather solution~solid line!. A perturbation strong enough
along theue& direction is able to move the breather located atX1 into the
basin of attraction of the mobile discrete breather.
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involved, that are connected to the symmetry-breaking pit
fork bifurcation at CP1 discussed in Sec. IV. The slowe
breathers, for 0.88,C,0.96 arose in the continuation wit
respect toC without any additional perturbation required
They have been termedspontaneous slow breathers. In a
narrow C-range aroundC50.89 both types of breather co
exist. BeyondC50.96 the breathers are again pinned. In t
region 0.6,C,0.72 MBs exist, but their motion is irregula
with apparently random sudden changes in velocity. Bou
ary crisis type of bifurcations have been invoked20 to explain
this regime of erratic mobility.

The MBs have phonon tails decaying in space. A Four
analysis of the oscillations in the tails reveals spectra that
be interpreted as Doppler-shifted combination frequencie
the driving frequency and 2pvb , as already indicated above
For the parameters used in this review36 there is no commen-
surability between these frequencies, so the MB is a qu
periodic solution. Due to the Doppler-shifts, the tails of
MB are asymmetric. The phonon tails play an important p
in collisions of two breathers, as the interaction between
breathers is mediated by phonons. Numerical experime
show that there are basically four types of final states fo
collision or scattering process of two MBs: the breathers
rebounce from each other, one of the breathers can be a
hilated, both breathers can be destroyed, or the breathers
form a ‘‘bound state.’’A bound state is a configuration of tw
breather cores situated at a certain distance from each o
propagating along the system together. Bound states of
locity zero have also been found.20

The simulation of scattering processes shows tha
larger separation the propagation of the colliding breath
seems to be unaffected by their respective collision part
and that there is a kind of ‘‘effective range’’ of the interactio
~'160! where the system selects one of the four types
final states. However, it has been found also that the fi
state can be changed by noise so weak that no thermal
tuations are visible in the energy distribution of the syst
on a scale set by the energy peaks of the breather co
Moreover, though the breather tails are exponentia

ith
FIG. 9. Single-breather velocity as a function of the couplingC, in the
Frenkel–Kontorova model. The values of the rest of the parameters
a50.02, Fac50.02, v50.2p. In the shaded region the breathers exhi
irregular motion. This figure has been taken from Ref. 20.
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damped, they still appear to be strong enough to influe
the scattering, as changes in the boundary conditions
tween periodic and free can change the qualitative result
scattering process given otherwise identical initial con
tions. This we have observed for a system of 1000 partic
As shown in Fig. 9, at a given value of the system para
eters, there is a unique value of the velocity of a sin
breather~apart from the small overlap between the induc
fast breather and the spontaneous slow breather regime!. In
numerical scattering experiments with spontaneous s
breathers a larger number of different bound states
found. Two of their main characteristics, the distance
tween the breather cores and the propagation velocity,
shown in Fig. 10. The chart contains the data from over
bound states. It is obvious that certain values of the dista
are preferred and that moreover there is a relation betw
distance and velocity. Clearly, several different values
the velocity are now possible at fixed values of the syst
parameters. There is evidence that the phonons betw
the breather cores play a decisive part in the selection
‘‘allowed’’ distance–velocity pairs. The precise mechanis
leading to the results shown in Fig. 10 is under investigati

VI. CONCLUSIONS

Numerical studies of DB’s in forced and damped lattic
of nonlinear oscillators~or rotors! allow a detailed investiga
tion of the properties of these exact localized states and
they vary as different parameters of the physical models
tuned. Compared to the Hamiltonian case, numerical pro
dures of adiabatic continuation are here simpler, faster,
more reliable, due to the character of local attractor that th
exact solutions enjoy. The robustness of these intrinsic lo
ized states against all kinds of perturbations~including sto-
chastic! allows us to consider dissipative discrete breath
as ‘‘potentially observable’’ states in experimental situatio

FIG. 10. Values of distance and velocity for bound states. The positio
the breathers was determined every 5000 time units, up to a total of 5
time units. This gives 10 values for the velocity and 11~101initial! for the
distance. The average of these values enters the diagram, error bars de
one standard deviation. The dashed line indicates the velocity of a s
breather~parameters:C50.890,a50.02,Fac50.02,v50.2p; system size:
1000 particles!. The dotted lines are spaced equidistantly.
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The existence of bifurcation~pitchfork, Naimark–
Sacker, period doubling, etc.! in the the continuation path o
DB’s, where new branches of localized solutions emer
originates DB’s with new properties: mirror-symmet
breaking~i.e., asymmetric!, quasiperiodic, and chaotic dis
crete breathers appear as attractors of the nonlinear dyna
in some ranges of the models parameters. While quasip
odic and chaotic DB’s are impossible as exact solutions
Hamiltonian systems, intrinsic localization has been sho
to persist in forced-damped systems under quasiperiodic
even chaotic instabilities of the breather core.

We have motivated the use of a collective variableX ~the
breather position! parametrizing the branches of asymmet
DB’s. This collective variable assumes a prominent role
the description of mobile localized excitations, leading to t
discussion of the concepts of the Peierls–Nabarro barrier
depinning energy. Branches of attracting mobile dissipat
DB’s have been numerically continued in the Frenke
Kontorova model with periodic driving and viscous dam
ing. These mobile DB’s are capable of forming two-breath
bound states in numerical scattering experiments.
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