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Dissipative discrete breathers: Periodic, quasiperiodic, chaotic, and mobile
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The properties of discrete breathers in dissipative one-dimensional lattices of nonlinear oscillators
subject to periodic driving forces are reviewed. We focus on oscillobreathers in the Frenkel—
Kontorova chain and rotobreathers in a ladder of Josephson junctions. Both types of exponentially
localized solutions are easily obtained numerically using adiabatic continuation from the
anticontinuous limit. Linear stabilityFloque} analysis allows the characterization of different types

of bifurcations experienced by periodic discrete breathers. Some of these bifurcations produce
nonperiodic localized solutions, namely, quasiperiodic and chaotic discrete breathers, which are
generally impossible as exact solutions in Hamiltonian systems. Within a certain range of
parameters, propagating breathers occur as attractors of the dissipative dynamics. General features
of these excitations are discussed and the Peierls—Nabarro barrier is addressed. Numerical scattering
experiments with mobile breathers reveal the existence of two-breather bound states and allow a first
glimpse at the intricate phenomenology of these special multibreather configuratiop80®
American Institute of Physics[DOI: 10.1063/1.1557237

Discrete breathers in dissipative arrays of nonlinear os- crete breatheréDB) can be observed are often dissipative,
cillators with periodic forcing show a remarkably rich and this adds considerable interest to the study of the subject.
variety of behaviors, compared to Hamiltonian discrete The mathematical proofs of existence of discrete breath-
breathers. Nonperiodic localized solutions in Hamiltonian ~ ers in Hamiltonian networks of nonlinear oscillatons-
lattices would decay due to the unavoidable emission of quires that a condition of nonresonance of the localized os-
phonons which delocalize the breather energy. This also cillation (or rotation with the band of extended oscillations
explains why Hamiltonian mobile breathers can only be  of small amplitude(normal modegof the lattice has to be
numerically observed as(long-lived) transients. However, ~ satisfied. However, this condition is not required for the ex-
as we will see here, quasiperiodic, chaotic, and mobile istence of discrete breathers in general dissipative networks
discrete breathers appear as exact solutions in dissipative Of oscillators>* Moreover, as explicitly proved in Ref. 4 the

lattices due to the efficient damping of the radiation away dissipative breather possesses the character of attractor for
from the breather center. initial conditions in the corresponding basin of attraction.

Roughly speaking, normal modes in dissipative lattices are
exponentially damped out, and thus the exponential localiza-
I. INTRODUCTION tion of energy is not destroyed by the resonance of the DB
harmonics with the “phonon band.” On one hand, this makes
The aim of this contribution is to review some recent considerably easier the numerical computation of dissipative
work on intrinsic localized mode@iscrete breathersn dis-  DB’s and on the other, as we will show below, it allows for
sipative systems of nonlinear oscillators subjected to periodi¢the existence of quasiperiodic and even chaotic DB’s, a fact
driving forces. Because of their fundamental interest, Hamilthat is in principle excluded for Hamiltonian systems.
tonian discrete breathers have received much more attention We mainly consider here two different examples of DB’s
than their dissipative counterparts. On the other hand, experin dissipative lattices: Oscillobreathers in the standard
mental systemglike Josephson junction arrgywhere dis- Frenkel-Kontorova model with the commensurability one
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(i.e., average interparticle distance equal to the period of th&he equations of motion of the Frenkel-Kontorova chain
sinusoidal substrate potendiaind rotobreathers in an aniso- subject to damping and aspatially uniform external driv-
tropic ladder of Josephson junctions with injected ac curing force are, in dimensionless form,

rents. Though very briefly, we will also make some mention 1

to an example of discrete breather in a simple model of Uj+ alj+ 5=sin(27u;) = C(Uj ;1 — 2Uj+ Uj_4)

coupled Van der Pol oscillators. In Sec. Il we discuss briefly 2m

the r_lume_rical procedures us_ed to obtain accurate bre_zather +F s Sin(wpt). 1)
solutions in both models, which are based on the continua- ] ) )

tion from the uncoupled limit of each model. In order to generate a DB configuration we start in the un-

In Sec. Il we explain some general features of the linea€oupled limitC=0, that is, we first consider the dynamics of
stability (Floqued analysis of forced-damped periodic DB. @ Single forced and damped pendulum, and try to find a re-
Intended to be self-containetb some extent this section 910N of parameters where there are at least two different
deals with both models, which due to some remarkable dirattractors(oscillationg coexisting. Note that, generically, all
ferences in the damping terms present some different fedgscillators have at_least two attractors f_or sufficiently low
tures in their linear stability analysis. After deriving some values of the damping and the force=,, if the frequency
straightforward properties of the Flogquet multipliers, we ob-@b Of the force is not wildly different from the typical fre-
tain some formal conditions for the nonappearance of exduencies of the autonomous oscillator.
tended instabilities of the uniformly oscillating background, ~ Therefore we initially choose values fat F 5, anday,,
along with the tail analysis valid for not-too-large forcing. and keep them fixed while we vagy. Then, for instance, we

In Sec. IV we review the phase diagrams of pinfiedi- fix one of the oscillators to the high amplitude solution and
mobile) DB in the Frenkel-Kontorova model and the Jo- all the others to the low one. Using as initial condition this
sephson junction ladder. In both models we find differentincoupled configuration, we turn on adiabatically the cou-
bifurcations experienced by the periodic DB. Interestingly,Pling parametec. The initial solution can be continued for
some of these bifurcations produce nonperiodic types of 10€#0 (Refs. 2, 3and it is assured that the continued solution
calized solutions, like quasiperiodic and chaotic discretdS an atiractor of the dynamitsMoreover, as one expects
breathers. We have analyzed their behaviors with differenthat the basins of attraction evolve continuously w@thas
techniques(Lyapunov exponents, Poincargections, etg. well, if the variation inC is small enough, this initial condi-

which unambiguously confirm the localized character oftiOn iS expected to evolve to the stable attractor, i.e., the
those excitations. exact continued DB. This makes the numerical continuation

In Sec. V we turn our attention to mobile DB, i.e., dis- Much simpler than in the case of Hamiltonian systems,

crete breathers propagating through the system. These exdfheré expensive root-finding methods are needed for
tations have been observed both in Hamiltonian and dissipgreather continuatioh. _ _

tive systems. In this report, our focus is on the later case, in 1€ nume_rlcal integration of equations of motion has
particular on the forced-damped Frenkel—Kontord) been done using a fourth-order Runge—Kutta me_thod. 'The
model. After some general remarks, we discuss the PeierlsRarameters that we have mostly used in the simulations
Nabarro barrier for mobile breathers. Then we recall som&hown below arex=0.02, wp=0.27r, andF ,.=0.02. Simu-
recent results on mobile breathers in the FK model before wiations for different values of the parameters were also per-
turn to the interaction of mobile discrete breathers in scatteriormed, in order to confirm the general validity of our re-
ing processes. The most interesting outcome of a twoSults. Though not in a systematic manner, in some generic
breather scattering process is a bound state. About the§&Se€s we have added to the initial conditions a small random
states little is known so far. We present the results of a largeROise typically of order 10°) to test for robustness. More-
number of scattering processes, providing first insights int®Ver. Special care has been taken in dealing with finite size

the rich phenomenology of these mobile multibreather state€ffects. While for low values oC (C<0.6) small lattice
sizes can be use@ay N=40), once the breather is dressed

by a phonon tailsee Sec. lll ¢, one needs to increase the

lattice size(sometimes up tdl=900) in order to avoid finite

size effects. Both, coupling to a noise source and finite size
Il. MODELS AND NUMERICAL PROCEDURES effects are important issues on their own, not only from a
A. The Erenkel—Kontorova model simulational and theoretical point of view, since experiments
in real dissipative systems are often done in small latlites
which are in contactboth thermal and nonthermabith a
Q/'ariety of degrees of freedom.

The Frenkel-Kontorova model of classical, harmoni-
cally coupled, atoms experiencing a substrate sinusoidal p
tential, was introduced more than 60 years adgostudy the
structure and dynamics of dislocations in metals. Along th
subsequent decades it has become one of the most universal
models of nonlinear physics, often used to investigate a Rotobreathers are DB'’s in which orfer more central
rather broad set of physical phenomena and systems likescillator rotates and the rest oscillate with decaying ampli-
charge(or spin density waves, adsorbed monolayers on surtude. The amplitude of tail oscillations decay to zero in
faces, commensurate—incommensurate transitions, dry fridcdamiltonian rotobreathers while for periodically forced sys-
tion, Josephson junction arrays, to name a few of thém. tems they decay to the uniformly oscillating solution of the

The Josephson junction ladder
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FIG. 1. Schematic picture of the Josephson junction ladder biased by
currents injected as shown.
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forced and damped lattice. This kind of DB cannot exist in,

for example, the Frenkel-Kontorova model, for the coupling

energy between a rotating oscillator and its oscillating neigh
bor would diverge quickly as time evolves. The coupling

term has clearly to be a bounded function of the variable
increment. But this is the case for many realistic models in
condensed matter systems, like Heisenberg or XY classic:%ﬂ’

spin models, where interactions are sinusoidal.

Rotobreathers were first numerically found by Takeno

and Peyrard! who also worked out approximate analytical
expression$ for a Hamiltonian system of sinusoidally

a
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these initial conditions, Eq2) has the solutiony;(t) = Qt
+ B for all i, where() and 8 can be chosen zero by a judi-
cious choice of the uniform initial conditiong;(0),x;(0).
One can then focus attention on tievariables(though not
exclusively, for one has to check for stability of the
x-homogeneous solution, see bejow

In order to generate the rotobreather solution, we look
for values of the parameterd,( €, 1 5c, ) of the decoupled
pendulumg (i.e., J,=€,=0) for which rotating and oscil-
lating attractors coexist. Then we fix one of the oscillators to
ﬁ1e rotating solution and all the rest to the oscillating one,
and keeping fixedJ ,€,,l ¢, ) while varyingJ, and e,,
proceed to the continuation of the rotobreather solution. As
argued in the previous subsection, adiabatic variation of the
couplings and integration of the equations of mot{@hand
(3) is all that is needed, due to the attractor character of the
rotobreather solution. Most of the results shown below were
computed forJ,=0.5 ande,=0.01, while the other param-
ters were varied inside some adequate ranges of values. As
ith the case in the previous subsection, both finite size ef-
ects and robustness against small random noise were care-
fully checked.

e

lll. LINEAR STABILITY ANALYSIS

coupled rotators. The existence proof of rotobreathers can b&. Floquet multipliers

said to be implicitly envisaged in the seminal work of
Mackay and Aubry,and it was later explicitly considered in
Refs. 2 and 4.

A system where rotobreathers were predittédand,
indeed, experimentally obsened*#is the anisotropic Jo-

sephson ladder, where two rows of superconducting islanqlés1

(see Fig. 1 are interconnected through vertical and horizon-
tal Josephson junctiongach type having different junction
characteristic parameters, subindexed ybyand x below).
Under the appropriate circumstancege Refs. 13 and 15
for relevant detailsthe so-called resistively and capacitively
shunted junction(RCSJ approximation provides an ex-
cellent description of the array dynamics in terms of the su
perconducting phaseg (and ¢/) of the upper(and lowejy
islands.

The equations of motion in the RCSJ framework are

Xi= I SIN(Xi+1— Xi)COL i+ 1— i) +SiN(xi—1— xi)
X o -1~ i) ]+ & Xi+1T Xi—1—2Xi),
bi=3,[COL xi 1= x)SIN b 1~ b)) +COL xi 1~ Xi)
XS 1~ )]+ e Bisat di1—2¢)

—Jy Sin(2¢) —2€, ¢~ (1), ()

where x;=3(6;+ 0]) and ¢;=3(6,—6/), 1(t)=1,.CoS(t)

is the uniform bias curreng, , are the Josephson couplings
(or critical currenty of junctions in the horizontalx) and
vertical (y) links, ande, , incorporate the resistive effects
from the contribution of normal electrons in tirespectively
horizontal and verticaljunctions.

Equation(2) can be effectively decoupled from E(R)

by choosing uniform initial conditions in the “center-of-
mass” coordinatedi.e., x; and y; independent ofi). For

)
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Let us denote byu;(t)} the periodic DB solution of the
Frenkel-Kontorova moddll) which is numerically contin-
ued from the uncoupled limit, and consider a small perturba-
tion, {v;(t)}, with v;=u;+ ¢; . After discarding terms which
re nonlinear ine; (assumed to be smalbne obtains the
nearized equations of motion around the DB solution,

4

Note thatu;(t) are periodic functions of time of period
t,=27/wy,, So that, for a system of si2¢, Egs.(4) forms a
system ofN coupled linear differential equations with time
periodic coefficients. If€;(0),€;(0)} denote a basis of ini-

.éj+a.€j+C0$27TUj(t))Ej:C(6j+1—26j+ej_l)_

tial conditions in the R-dimensional tangent space, the
monodromy(or Floquej matrix F is obtained by integration
of the linearized Eq(4) over a period,, for each of the Rl
basis vectors,

€(ty) }_( €i(0)
('eJ-(tb) (0) ®
The Floquet matrixF relates the small perturbations at
t=t, to those at=0; in other words,F is the matrix asso-
ciated to thellinean t,-map of (4).
In a similar way, one obtains the linearized equations
of motion around the ladder rotobreather solutipg(t)

:0!¢i}’
Oxi=Jd COL i 41— &) (Oxi+1— Oxi) T COL P _1— &)

X(8xi-1= Oxi) 1+ &l Sxiv1t 6xi-1—20xil,  (6)
S =,LCOL i 1= B)(8¢hi 11— S¢bi) +COL i1~ )

X(8¢i-1= 8¢+ &l 541+ 51— 25¢]

—2J,co82¢y) S — 2€,5¢; , (7)
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and by integrat?on over a pgrioﬂbf 2nlw,=4mlw of &  f(t)=cos(2ru.(t)), and E(q)=4C sir(g/2) — a?/4, we ob-
vector basis in the (M-dimensiongl tangent space tain for each spatial Fourier coefficienf(t) the equation
{6xi,0¢;,0xi,0¢;}, the Floquet matrixF is obtained,

_ _ 7t + (E(q)+f(1)) n%(t)=0. (11)

{0xi, 061, 0xi ’5¢i}tT:Tb:f{5Xi 0, OXi v5¢i}tT:o- (8) This is a Hill equation. For each solution’(t) of the
The linear stability of the breather solutioeither ~ Single Hill equation(11) we have a solution of the form,
{uj(t)} or {xi(t)=0,¢i(t)}) requires that all the eigenvalues Ej(t):eiqje— a2 0t (12)

of the corresponding Floquet matiigalledFloquet multipli-
ers) are inside the unit circle. The corresponding eigenvecfor the linearized problem. The Hill equati¢hl) has a gen-
tors are the directions along which the perturbations grow ogeral solution which can be expressed in terms ohitsmal
decay with a rate given by the Floquet multipliers. Sicicss ~ solutions which have the property,
;?;L, gnMeIng:r?vg;ggno\glue ofF, its complex conjugate is P+ 2l wp) =N (), 13

For the case of the Frenkel—Kontorova model the Flowhere\, is called the characteristic number of the equation.
quet spectrum has a special structure, whose details are rehe complex numbep, defined as\,=exp(2mpq/ay) is
vealed using the transformati¢see Ref. 1p called characteristic exponefits imaginary part being de-

e(t)=e 25 (1) (9) fine_d up to an additive multiple aby). In the ge_ne_ric case in

! e which Eq. (11) has two different characteristic numbers

which transforms the linear dissipative system of &g.into )\; g . their product is equal to unitysg)\gzl, and the
a (nonautonomoysHamiltonian system of oscillators, general solution has the form

#7j— (a?l4—cog 2mu;(t))) 7;=C(mj+1— 27+ j_1). (10)

The eigenvalues of the linear symplecticmap of these Lo ) o
equations must come in pairs such that their product is unit)Vhe€re ¢ ,.c. are constants angy, , i are time periodic
Together with the fact that the map is real, one has these wel#nctions  with pegod Zlw,. Consequently, 7%(t) s
known'” three possible case§) pairs of complex conjugate boundeg byK exp(og™1), with K some constant, ang
eigenvalues lying on the unit circle, withy=X,; (i) pairs =maxpg ,pg}- Thus, from Eq.(12), we conclude that the
lying on the real axis, with ;= 1/\,: (iii) 4-tuples of eigen- stability of the homogeneous solutidn..(t)} is assured in

. the parameter region in which
values withh;=1/\,=XA3=1/A,. Note that the transforma- P 9
tion (9) scales the eigenvalues by a factor expt,/2], and Psup=SUppq < al2. (15
thus the Floquet multipliers g#) must either lie on a circle q

of radius expt aty/2), With u,= 1, or on the real axis such The determination of this region in parameter space can

that pu,po=eXp(-ofy), OF come as 4-tuples such thah only be done by numerical means. For the range of param-

:“g /"ch: K4, E"“l:et):]p(_FTtb)/“‘;' . ‘ the ladd eters that we have used in our studies, the functidgh is a
n e contrary, the Floquet spectrum ot the fadder 1oy, amplitude oscillation around the value 1, and, as ex-

tobreather does not have such “almost-symplectic” Strucwrepected from the well-known results on weakly time depen-
b_ecause s da.mp'”g t_erms mthe_forn{d:_fscret_e Lapla- dent Hill equations, we have not observed instabilities by
cians of the velocities which appear in the linearized E6js. extended modes

and(7). This type of damping term, sometimes referred to as Now we consider the spectrum & for the ladder. The

tphonon Idamglng, flgjffosest different dtecaylng tt'mebscaleslinearized equations of motion around the homogeneous so-
o normal modes of different wave vecttgee next subsec- lution are, for the{ dx; , 8;} components,

tion), thus producing a more scattered structure of Floquet
multipliers in the complex plane. Oxj=JA X+ €A b, (16)

(D) =c. e Yy (D) +c ey (1), (14

_ - whereA denotes the discrete Laplacian. Fourier transforma-
B. Extended instabilities tion gives
In the limit of an infinite systemN—o), the Floquet
spectrum of a breather consists of a continuous part associ-  sy9(t)=—4J, sinz(g) Sx(t) —4e, sinz(g) SxA(t)
ated with spatially extended eigenvectors and a discrete part 2 2
associated with spatially localized eigenvectors. Marnd (17
Aubry'® have argued that the continuous part of the spectrurgg that each Fourier componefit? is a linear damped os-
of Fis the continuous spectrum of the Floquet matfixof  cillator (with damping coefficient dependent on wave num-
the linearized problem around the homogeneous solutioBerq), and we conclude thato extended instabilities in the
(i.e., without breather {uj(t)}={uw(t)} (FK mode) or X components can occur
{xi(t) =0,¢i(1)}={0,¢.()} (Josephson ladder Regarding the linearized equations for thép;,d¢;}
First, we consider the spectrum @&t for the Frenkel— components,
Kontorova model. Under the usual periodic boundary condi-
tions, we look for solutions of the linear problem with the 5;ﬁj:‘]xA5¢j+€xA5¢j_2Jy Cos(2¢m(t))5¢j—2€y5¢»
plane-wave form »;(t)=e'Y79(t). Denoting simply by (18)
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one can proceed in the following way: First, a transformation

similar to (9), that is 6¢; = exp(g,t)y;, followed by the Fou-
rier transformationy;=exp(qj)y*, lead to a damped Hill
equation,

YI+[E(Q)+ f(1)]y9+ 4e, sinz(g) ¥9=0, (19
where  E(q)=4(Jx— exey)sin(q/2) — €
=2J, cos(2p..(1)).

Now, if E(q)=E(q)—4e€2sin*(g/2), the final transfor-
mation y9= exp((—2¢, sirf(q/2) )t) v9 leads to a Hamiltonian
Hill equation,

and

f(1)

PI+[E(q)+f(t)]»9=0 (20)

for the transformed variables®, which are related to the
initial 6¢; through
5¢j(t):eine_(€y+2€XSinz(qlz))tvq(t). (21)

Denoting bypg**the maximum of the two characteristic
exponents of the Hill equatio(20), one obtains the follow-
ing condition:

max

pq <Ey+26XSinz<g) for all q (22)

for the stability of the homogeneous solution of the ladder.

C. Tail analysis

In the forced and damped systems of nonlinear oscilla
tors that we are analyzing, the “background” uniform state,
which is approached by the DB solution far from its local-

ization center{u.(t)} (FK mode) or {0,¢..(t)} (Josephson

laddey, is not a rest state, but a uniform oscillation. In this

section, we will assume that these oscillations have a ve

(4) and (7) terms of orders higher than linear in,(t) and

¢..(t), respectively. This amounts to neglect, for the local-
ization center, for the time dependence of the correspondin

coefficient in the linearized Eq$4) and (7). This approxi-

mation, which is valid for not too large values of the param-
eterF 4., simplifies matters for we are left with the standard
problem of a linear chain with damping, which can be ex-

actly solved(see also Ref. 19
We consider first the linearized equatio@s of motion

Martinez et al.

inhé sing= - 25
sinhé sing= 5. (29
These algebraic nonlinear equations have to be solved
for g(w) and&(w) assuming fixed values of dissipatierand
couplingC. The familiar dispersion relation for the extended
normal mode solutiongophonon bangof the discrete Hamil-
tonian lattice,

w?=1+4Csirf(q/2), (26)

§=0, (27)

along with nonzero inverse decay lengitw) given by

w?>=1—-4Csint?(&/2), (29

w?>=1+4C cosH(¢/2), (29

for values ofw, respectively, below and above the phonon
band, are obtained in the Hamiltoniaa£€0) case. Only
small oscillations with frequency in the band, i.e.e[1,1
+4C], are extended §&=0). Small oscillations with fre-
quency outside the phonon band are damped out far from the
edge of the semi-infinite chain, that is to say, they are expo-
nentially localized. This serves to illustrate how the Hamil-
tonian breather needs to have all breather harmanigsout

of the phonon band, so that the small oscillations associated
to these frequencies decay exponentially with the character-
istic length £ }(nw,), and the size of the Hamiltonian
breather ist, *=sup, £ *(nwp).

When a#0, we have that(w)+#0. Thus, any solution
decays exponentially. An example of the solutidtie) and
g(w) of Egs. (24) and (25), for the particular valuesy
=0.02 andC=0.75, appears in Fig. 2. For purposes of com-
parison, the graphs corresponding to the same value of cou-
pling for the Hamiltonian case are included.

Note that for the existence of damped-forced discrete

small amplitude, so that we can discard in the linearized Eqs%_reathers there is no need of a nonresonance condition

contrast with the Hamiltonian casebecause for any fre-
quencyw, ¢(w)# 0. However, for low values of, if some
reather harmoninwy, belongs to the interval of values af
r which &w) is very small, the breather profile will show
large “wings.”
For the Josephson ladder, under the assumption that
cos(2p..(t))=1, the tail analysis leads to

w?—(2€,sinh¢ sing) w+ 2J, coshé cosq—2J,—2J,=0,
(30

around the DB in the Frenkel-Kontorova model. Under the

previous assumption, fdij|>1 the coefficient cos(@uj(t))

(2€, coshé cosq—2e,—2€y) w+2Jysinhésing=0.  (31)

is thus set to unity, if one discards terms less than or equal to The dispersion relation for the Hamiltonian ladder is

u2(t). Now we consider a semi-infinite chain with the
boundary condition at the edge given by(t) =exp(—iwt),

and look for solutions of4) of the form
€j(t)=elErimigmiot, (23

After insertion of (23) into Eq. (4) one obtains for the
real and imaginary part, respectively,

1
_ _ _ .2
coshé cosq=1+ 5= (1~ w?), (24

w?=2J,+2J,(1—cosq) (32
and the phonon band is restricted to
Omin=V2Jy< 0=<4J,+2]y= 0nax- (33
Outside this phonon band,is equal to
2(3,+3,) —w?
§=cosh‘1% if w<wyin, (34)

2J,
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FIG. 3. Tail analysis for a rotobreather in a Josephson junction ladder. Wave

vectorg and inverse decay lengthas functions ofw for the ladder param-
FIG. 2. Tail analysis of dissipative DB’s in the Frenkel—Kontorova model. eters 0,=0.5,J,=0.1, &,= €,=0.01). For the latter, and outside the “pho-

Wave vectorg and inverse of the decay lengéhas functions ofw for two
different values of the damping,=0.02(open circlesand the Hamiltonian
casea=0.0 (filled ones. The coupling parametet is in both cases equal
to 0.75.

—2(Jx+ ) +?
2J,
An example of the solution§ w) andq(w) of Egs.(30) and

(31 for the valuesl,=0.5J,=0.1¢,=¢€,=0.01 appears in
Fig. 3 where the Hamiltoniane(=¢€,=0) results are also

é=cosh ! (35)

if o=wnip-

non band,” the Hamiltonian and dissipative solutions almost overlap in spite
of the differences between both cases shown ingtvariable.

(or shooting schemes to solve the equations of the strobo-
scopic maps. This requires a careful computation of the
equations of motion in both nonlinear and linear approxima-
tion, besides some tricks to avoid time and energy translation
degeneracies. However, in dissipative systems, breathers are
real attractors of the dynamics and we can forget most of the

shown. Comparing it to Fig. 2 for the Frenkel-Kontorova cautions one has to take in the Hamiltonian case.

model, one can realize how the “Laplacian damping” has a
strong qualitative effect on the graph@fw) for high values
of w. .
As shown in the upper panel, for frequencies above thél)
normal mode ones, it is not possible to reach the wave vector
g=m when the system is dissipative. That means that no

“antiferro-like” linear mode is allowed for this system. Also

for low w there are two values witlh=0 (or “ferro-like”

mode in this language the first is trivial, =0, and the

second one iso=2Jy—2J,€,/&,. (i)

IV. BIFURCATIONS

In this section we will review the rich phase diagram of
pinned (nonmobilg dissipative DB’s in the two models un-
der scrutiny: oscillobreather solutions in the Frenkel—(iii)
Kontorova model, and rotobreathers in the Josephson junc-
tion ladder. To face this task we adopt the well-known
method of continuation from the anticontinuous limit. As al-
ready mentioned in previous sections, a dissipative system
has some advantages over a Hamiltonian one when it comes

Several auxiliary quantities have been computed in order
to characterize completely the solutions:

For periodic DB, the spectrum of Floquet multipliers
was numerically computed for each solution, thus
monitoring their evolution on the complex plane. This
allows us to follow the linear stability of periodic at-
tractors, locate the bifurcation points where straight-
forward continuation stops, and characterize ad-
equately the type of bifurcations.
Poincare(stroboscopit sections of the numerical so-
lutions. This is particularly convenient when dealing
with nonperiodic DB’s whichlas will be seen below
often emanate from some bifurcations found in the
continuation path.

The power spectrum of quasiperiodic and chaotic so-
lutions. This is defined by

2

Sw)= J:)'(j(t)é“’tdt , (36)

to finding good numerical solutions of the equations of mo-whereX;(t) denotes eitheu;(t) or é;ﬁj(t), depending of the
tion. Methods in Hamiltonian systems are based on Newtomodel under consideration. Note that we use velocities in-
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the broken symmetry DB’s form the stable branches, and the
X symmetric branches are linearly unstable.

The breaking of the left-right symmetry renders mean-
ingful the concept otenter Xof the breather as a continuous
variable. This concept, certainly alien to the ancestral anti-
continuous origin of thél-site and 2-sitescontinued DB’s,
serves to measure quantitatively the degree of asymmetry of
the solutions on the asymmetric stable branches. The vari-
ableX is like a sort of “order parameter” associated with the
symmetry-breaking transitions &, andCp,, or better said,
is acollective variablei.e., the average valu@ver compo-
| ! ! ! nentg of some functionf on the solution, measuring its
05 Cm Cp2 0.58 asymmetry. This value can be chosen to be the integer for the
fG 4 Seh howing the oitefork. bifurcatiofsi . 1-site DB (now better calledsite-centeredDB) and half-
bree-lkin-g tr(;n(es?:iihSofotWhI:gpinnidplerig(riic c;igtr:(r::t:eoﬁég?r:erssy%m;gFK integer for the 2-sites Difor bond-centeredB). This mea-

model when the coupling parameteg)(increases. The asymmetry charac- SUre X of the aSY_mmetry is then nat_urally i_nterpreted as the
ter is measured b (see text Solid (dashell lines mean stabléunstable ~ center of the static breather. Collective variables of this type

solutions. are commonly used to describe mobile localized excita-
tions?>?2 though hereX is purely motivated by symmetry
considerations.
stead of angles or positions for computational convenience, The connection of the pitchfork bifurcations lik&; and
in particular when rotations of some variable occur, as inCp, to the issue of breather mobility is not limited to the
Sec. IV B. emergence of the collective variabteas important breather
descriptor. It turns out that the Floguet mode driving the
bifurcation(symmetry-breaking modewhen added as a per-
turbation (of large enough amplitudeto the static stable
We summarize here the numerical findings reported irDB’s drives easily the system towards stable attaccting mo-
Ref. 20 on the evolution of the properties of continued DB’shile breathers. This procedure to obtain numerical approxi-
when the coupling parameter is adiabatically increased frormations to mobile breathers by perturbing static ones with
C=0. Let us note that both the 1-site and the 2-sites periodiantisymmetric modes was used in Hamiltonian models sup-
continued DB’s are mirror-symmetric around the localizationporting DB’s?*?4The termdepinning modevas then coined
site and bond, respectively. Both were found to be continuto name these modes, bsymmetry-breakingnodes is an
able until very high values of, where the continuum limit equally correct term, as mobility requirést some levelthe
is approached. However along the continuation path we haviereaking of the left—right symmetry by the mobile solution.
found many bifurcatior(or branching points where several Pairs of pitchfork bifurcations with a branching diagram
branches of qualitatively different breather solutions meetas shown in Fig. 4, occurs repeatedly wi@increases, as a
The bifurcations observed are of two general classes, namelyproadening mechanism” by which the DB’s width growths.

i+l

A. Oscillobreathers in the FK model

pitchfork and Naimark-Sackerbifurcations. The Floquet eigenvalue associated to the symmetry-breaking
bifurcations remains closer and closer tdl at all times,
1. Pitchfork bifurcations announcing the appearance of a Goldstone nidde to con-

At one side of the bifurcation point, a branch of mirror- tinuous translational invariangas C—cc. This was ostensi-

symmetric stable periodic DB exists, while at the other sidelly manifest alC=5.

two stable branches of periodic mirror-asymmetric DB’s and ) ) )

an unstable branch of periodic symmetric DB’s meet. The?- Naimark —Sacker bifurcations

Floquet spectrum of the stable symmetric DB shows that an  Also known asgeneralized Hopf bifurcationsr Hopf

eigenvalue approachesl at the bifurcation point, exiting bifurcations of periodic solutionsAt the bifurcation point,

the unit circle past the bifurcation on the unstable DBtwo complex conjugate Floquet multipliers of the periodic

branch. The eigenvector associated to this instability is anticontinued DB cross the unit circle at exg(p), with ¢#0,

symmetric and exponentially localized. The two stableand the periodic breather becomes unstable. In the simplest

branches correspond to two asymmetric DB’s, one being thease, called supercritical, a two-frequenay, (@nd ¢ w,/27)

mirror image of the other. These pitchfork bifurcations arestable quasiperiodic DB borns out of the bifurcation. In the

thus (mirror-) symmetry-breaking transitions of the periodic subcritical case, an unstable quasiperiodic attractor merges

DB'’s. with the stable periodic DB. We have observed both subcriti-
Figure 4 shows the branchin@r bifurcatior) diagram cal and supercritical Naimark—Sacker bifurcations.

for 0.5<C<0.6 at fixed values of the rest of parameters. In  Figure 5 shows an example of a stable 2-site quasiperi-

this range ofC values, two pitchfork bifurcations occur at odic DB. The power spectrum for one of the particles in the

Cp1=0.52962 andCp,~0.55315 Note that foC<Cp; the  breather core shows peaks at linear integer combinations of

1-site DB is stable while the 2-sites is unstable, and that fotwo basic frequencies. Though the lack of periodicity of

C>Cp, the situation has been reverted. Koy <C<Cpy, these solutions prevents the use of Floquet analysis to study
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A L junction ladder previously studied in Ref. 25. As in the
Frenkel—Kontorova model analyzed in the previous subsec-
tion, we have found several different bifurcations. Moreover,
due to the existence of more tunable parameters and the fact
; that we have now two variablég, y) per site, the complex-
3 A ity of different scenarios is correspondingly greater than for
pv A A WAV e o .
the Frenkel-Kontorova model. In what follows we describe
some of them. First, we must remark that the tool used for
e—ta 1 1 describing the nature of the bifurcations is Floquet analysis
& a0 R _ G et R (see Sec. Il A and therefore we are restricted to periodic
time rotobreathers. Moreover, along this section the initial roto-
— breather we use is uniformly zero jp variables(see Sec.
T I1B) and exponentially localized igh's.
As it is a nonexhaustive exploration we keep fixed some
of the parameters)(,=0.5, ,=0.01, »=1.5 while varying
the others J,, €, |4c). Prior to the detailed description of
. each observed bifurcation we summarize them in Fig. 6.
The first observed bifurcation was found when the Jo-
sephson horizontal couplingl{) increases above values
. A T aroundJ,~0.105. The associated Floquet multiplier leaves
0 0.2 0.4 0.6 0.8 LT . .
2 the unit circle at—1 and the corresponding eigenvector has
oen zero components alongo; and 8¢; and nonzero alongy;
FIG. 5. Two-site quasiperiodic oscillobreather in the Frenkel-Kontorovaand S; . This destabilizing mode is exponentially localized
model. Note that particles on both sides of the breather are out of phase. The.q\nd the center of the rotobreather solutite study done
figure below shows the power spectrum of one of the central particles. The h h dedi biliti .
peaks are linear combinations of the two frequencies. n Sec lNBs _OWS that no extended Instabilities can occur in
the initially uniform y components of the breatheiThe ab-
sence of an on-site pinning potential term in the equations of

their stability, the attracting character of this quasiperiodicmotion (3) makes the new localization length scale in fhe
DB can be numerically ascertained, checking its robustnes¢ariables much larger than in thgones. Other characteris-
against small perturbations. We have to emphasize here tliigs of the new oscilloy-breather are spatial symmetry, an
strong sense of stability that these quasiperiodic solutiong/most “antiferro-like” profile and a time period twice the
satisfy: They are attractors of the dynamics, possessing aperiod of the(¢) rotobreather. This instability is almost in-
open setbasin of attractionof initial conditions asymptoti- ~ Sensitive to changes in the paramelggsande, (see panel a
cally converging to the DB. The inspection of figure revealsin Fig. 6). Extending the study but now to the new combined
that an adequate description of this DB in terms of the col<-x-breather arising from the bifurcation shows that it only
lective variable X is that of a breather oscillating in a survives a small increase iy before it becomes unstable
(Peierls—Nabarro-typeotential well. From this perspective, and disappears.
the Neimark—Sacker bifurcation would be an instability of A second type of instability occurs when the current in-
the “constantX” pinned breather, leading to an “oscillating tensityl . is increased, while keeping fixelj ande, . Here
X" pinned breather. Another suggestive description of thisthe Floquet multiplier that drives the instability process
quasiperiodic DB is to look at it as a “beating solution” for leaves the unit circle through 1. The associated eigenvector
the two central oscillations. has zero components aloy and 6y; and nonzero in the
The example shown in figure belongs to a stable branckb's. Again, as in the previous case, the profile of the eigen-
of quasiperiodic DB. This branch has an interval of instabil-vector is localized around the breather center. The new roto-
ity (0.88<C<0.96) where the breather spontaneouslybreather obtained after perturbing the initial one along the
moves. No pinnedperiodic or quasiperiodjcstable DB ex-  €igenvector direction has twice the period than the one be-
ists in that parameter interval: Only mobile breathers occufore the bifurcation, so the instability is a typical period-
for that (relatively narrow range of coupling. These mobile doubling bifurcation. Beyond the first one either further pe-
breathers are not continuation of the mobile breathers intiod doubling processes occur or an inverse period doubling
duced by perturbing static DB’s with symmetry-breaking can appear sometimes to bring the rotobreather solution back
modes, but seem to born out straight from the destabilizatiotP the previous period.
of quasiperiodic pinned DB. No stable pinned breather coex- A third type of bifurcation destabilizing the rotobreather

ists anymore within this interval with mobile attracting is generally found when the parametgris increased. Here
breathers. the Floguet multiplier leaves the unit circle &tl. The asso-

ciated eigenvector is also localizeddrs and null iny's with

a localization width of the order of that of the initial roto-

breather. Perturbing along the eigenvector brings it into the
Here we summarize the main features of the phase digasin of attraction of the uniformly oscillating solution. It is

gram of rotobreather solutions in the anisotropic Josephsolikely a saddle-node bifurcation. Theg, value at which the

148 150 152 154 156

B. Rotobreathers in the Josephson ladder

Downloaded 24 Oct 2003 to 155.210.16.42. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



618 Chaos, Vol. 13, No. 2, 2003 Martinez et al.

0.14 r T T T T section we analyze another interesting case when the param-
012 [o=0.3 ] eter that we change adiabaticallyds
0.10r ] C. Chaobreathers
Jx 0.08 One of the more interesting features found in the bifur-
0.06¢ ) cation analysis of rotobreathers in the anisotropic Josephson
0.04 . junction ladder biased by external currents, was the existence
0.02} ] of chaotic rotobreather solutioR%,where the “degree” of
. . . . A chaoticity is also exponentially localized in spaéeég. 7).
0-0%00 0.005 0.070 0.015 0.020 0.025 0.030 The discovery was made when varyiagcontinuously
€ and keeping fixed),=0.05, J,=0.5, €,=0.03, €,=0.01,
X l.c=0.72. Around the valuev=1.623 a subharmonic cas-
cade of period doubling bifurcations transforms the initial
0.14 i . i i . i . exponentially localized periodic rotobreather into an also
N 12_°~““ 5 (b) ] exponentially localized but chaotic rotobreather. This case

R looks like the period doubling bifurcations observed when
0.10f 1 the external current is increasdgsee previous subsectipn
0.08F°%* - but in that case a complete subharmonic cascade was never

JX 0.06 .9 ] detected.
i , - To analyze the chaotic character of the rotobreather so-
0.04 0% 07 8% 8% to ‘D lution one can compute numerically the spectrum of
0.02} . Lyapunov exponents and obtain the Lyapunov dimension.
0'0% . . . . . . Arguments about the genericity of the existence of cha-
.0 01 02 03 04 05 06 07 0.8 otic breathers in other nonlinear systems were given in Ref.
| 26 and also numerically confirmed in a chain of harmoni-
ac cally coupled and forced van der Pol oscillators,
04—, $i=— (B} = 1)~ ¢+ bcoswt+C(i1— 2+ di—1).
0.42} oce J,=0.05 (c) ] (37)
0.10 | 056 a ] It was easy to find in the literatufethe parameter region

: ' where three different attractors coexist for the single forced

0.08 -0 —~ ] and damped van der Pol oscillator, two of them chaotic and
€ o.08[ "® O o= °7 ] the other periodic. The continuation method allowed us to
0.04l B ] follow the evolution of a chaotic breather-like uncoupled so-

) B D lution (the central oscillator in one of the strange attractors
0.02r c 1 and the rest of the chain in the periodic o to coupling
o_o% L L L P strengths significantly different from zero while preserving

0 01 02 03 04 05 06 07 08 the chaotic nature. Another example of chaotic rotobreathers
Iac is reported in Ref. 28, where alldriven damped lattice of
dipoles was studied.
FIG. 6. Two-dimensional sections of the three-dimensiodal, (e,, 1a¢) Although this numerical evidence provides strong sup-

explored parameter space of the JJ ladder. The different lines are the froerbort for the existence of chaotic DB in generic forced and
tiers where a given instability is observed in the Floquet analysis of th

periodic rotobreather. Widely dotted lines correspond to period doublingda_mped lattices of nonlinear oscillators, a rigorous proof of
bifurcations(only the first one is shown for the sake of clarity, but a second, existence has been sketchednly under strong mathemati-

third, etc., can occlir Broken lines representinstability bifurcations, and  cal conditionguniform hyperbolicity, which usually are not
continuous lines indicate saddle-node bifurcations. Tightly-dotted straighgatisﬁed in realistic physical models

lines in each plane are the corresponding intersections with the other planes. . . .
The pointsA, B, C, andD are indicated to easeDBmental reconstruction. Chaotic mobile DB have been observed numerically as

long-lived transients in Hamiltonian systems, but exact
Hamiltonian chaotic DB could not exist, due to the “broad
band” structure of the power spectrum of chaotic trajectories,
bifurcation occurs increases with increasing current intensityvhich would violate the nonresonance condition.
l.c [see panelc) in Fig. 6], a fact which agrees with the
simple physical intuition that the effects of both parametersy. MOBILE AND INTERACTING BREATHERS
on the central rotating;(t) oppose each other. A General remarks
We have shown here how the many parameters of the"
model besides the two variables per site increase the com- In the previous section we have shown how diverse new
plexity of possible bifurcations. We could also make varia-properties(e.g., mirror asymmetry, quasiperiodicity, chpos
tions in the other three parameters kept fixed in this work anéppear as characteristics of some branches of attracting dis-
other possible scenarios could arise. Actually, in the nextrete breathers that emerge from the diverse bifurcations one
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FIG. 7. Poincaresections of the trajec-
tories ¢;(t) at times t+n2T,, for

three different oscillators of the chao-
1% 00 3.10 320 330 340 0420 0419 o418 047 -oar¢  breather in the JJ ladder. The pictures
show the planeg (in radians per unit
time) versusd¢ (in radiang for the ro-
tor (a), its fifth neighbor(b) and the
ninth one(c). Notice the very different
scales oflb) and(c) in order to see the
0.0133 spatial localization of the chaotic con-
Y tribution to the dynamics of each os-
cillator.

0.010

0.0129

0.0125

0.0121

-0.4186 -0.4182 -0.4178

finds along the continuation path numerically followed. An-consider a MB to be a solution with an internal degree of
other property of some attracting branches of breather soldreedom (oscillation or rotation that propagates along
tions ismobility. We have already remarkéfttom pure sym-  the systenf! The internal degree of freedom need not be
metry considerations the convenience, as quantitative periodic, but can have a spectrum of incommensurate
descriptor of the breather, of using a collective variakle frequencies.
real and continuous, which is naturally interpreted as center The oscillations of the internal degree of freedom can
of the localization of energy. Mobile breathers are solutionggenerate phonons in the system. As for the relation between
where the average value of the breather ceKtembound- the frequencies of the phonons and the frequency or frequen-
edly increasesor decreasgsas time goes by. cies of the breather, it has to be taken into account that a
Observations ofmoving breather-like excitations have (angulaj frequency wqy in the restframe of the MB is
been made both in Hamiltoni&?* and dissipative sys- Doppler-shifted due to the translatory motion of the breather,
tems?° Contrary to the case of pinned breathers, there is, aaccording to
present, no exact proof of existence for mobile breathers
(MBs), i.e., breathers exhibiting translatory motion. How-
ever, the observed excitations appear to be quite stable idereq is the wave vector in the restframe of the chain, and
simulations, and in the case of the dissipative and drivemw is the frequency observed in this frame. Depending on the
Frenkel—-Kontorova moddfl) numerically have been found complexity of the dispersion relatio(q), a numerical so-
to be attractors of the dynami€SThe most typical type of lution of (38) can be called for. Note that every, leads to
pinned breather is a periodic solution of the equations ofwo frequenciesw(q;) and w(q,), one for emission in the
motion. For a MB with a translation velocity,# 0, strict  direction of the propagation, one for the opposite direction;
periodicity is possible if the system itself is a ring of size for higher dimensional systems things can be more compli-
and the timeT=L/v, required by the breather to travel cated, as there are infinitely many intermediate directions.
round the ring once is related to its internal peridg  Another point to be taken into account is that the propagation
=2mlw, by mT=nT,, wherem,n are integers(another at velocityv, of the MB along a system of periodicity (the
possibility would be that the breather is reflected twice fromrescaled lattice constantonstitutes a perturbation of fre-
the opposite ends of a finite chain, and the above consideguency 2rv, as seen in the MB restframe. Due to the non-
ations can be reinterpreted accordinglys often one prefers linearity of the system, combination frequenci@swy
to think of the system as an infinite chain rather than a finitet n27v,,, m,n integer, can be created, which then are also
size ring and because requirements on the system'’s size likeoppler-shifted. Many phenomena of the dynamics of soli-
that above may be considered as too restrictive, periodicityary waves successfully have been described within a collec-
can be taken as periodicity up to integer position shifte  tive variable approach, e.g., Refs. 22, 31, and 32. This ap-
consider a lattice of periodicity )1 This requiresv,T,  proximation aims at capturing the main features of the
=m/n, with m,n as integers? In the following we will not  dynamics of a largéor infinite) number of degrees of free-
restrict our discussion to such “periodic” solutions and dom, those of the constituents of the system, by the dynam-

@(Q)=wo+vpg. (38)
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ics of considerably fewer variables that are appropriate for @ompletely analogous to the definition of this potential in the
collective description of the solitary excitation. The most im- case of “simple”(i.e., without additional internal degrees of
portant example of a collective variable is the position of afreedom solitary waves, related quantities can be intro-
solitary wave, other examples can for instance be found imuced, for example, a depinning energy. The Floquet-matrix
Ref. 33. There exist different ways of introducing collective of certain breathers possesses localized eigenveiig® }
variables, but typically integrations over functions that de-corresponding to spatially antisymmetric internal modes.
scribe the shape of a solitary wave are involved. As thisThese modes have been used to turn a pinned breather into a
shape does not explicitly depend on time, but only on themobile one. Following Ref. 24 the optimal way to do this
collective variables, one eventually arrives at equations fouses only the velocity parts of this mode{lf,(t)} denotes
the collective variables where all reference to the time dethe breather configuration, the perturbed initial configuration
pendence of the constituents of the system has disappearésl.obtained as
Thus only the collective variables remain as dynamical quan- per . B - er . i ,
tities; this usually is a great simplification. For breathers, on ~ Un (t=0A)=Un(0), Uy (t=0))=0u,(0) + A €n(0).
the other hand, the explicit time dependence of the shape is a (39)
distinguishing feature and a standard collective variableNote that in this case, by the choice bt0, the internal
treatment is problematic: The collective variable equation%egrees of freedom are fixed to a certain “phase” at the
explicitly contain time. This time dependence stems from th@nstant of the perturbation. A minimal magnitude of the
constituents of the system and requires that the time depeperturbation is necessary in order to initiate translatory mo-
dence of the breather solution is known. So, usually, a reafon of a breather. The velocity of the thus generated MB
simplification is not possible. Recently, a different type of depends o\ — A, for the Hamiltonian system. It has been
collective variable technique has been presented for breatfyroposeé® to use the threshold, as a means to define a
ers in Hamiltonian systenfs:Breather solutions are consid- peijerls—Nabarro potential barrier for moving discrete breath-
ered as loops in phase space. The loops are characterized @, If, in(39), {u,(0)} is chosen as a breather configuration
a set of parameterg that play the role of collective vari- at an instant of its internal motion where all particle veloci-
ables. The dynamics in phase space is tranferred to a dynames i, =0, and if the vector@,&(0)), theO representing the
ics in the space of loops by averaging over one period of &anishing elongation part of the perturbing vector, is normal-
loop. As an approximation, the dynamics in loop space iszed, then indeed the energy of the perturbatioghié, and
considered to be sufficiently well described by the time eVO-CorrespondingW%)\g can be interpreted as an energy barrier
lution of the parameterg. The last step corresponds to the to be overcome in order to excite a nonzero translation ve-
reduction of the dynamics of a solitary wave bearing systeniocity of the breather and therefore as a depinning energy.
to the dynamics of the collective variables describing the A different way of introducing the concept of a Peierls—
solitary wave. Nabarro potential can be found in Ref. 31. There, as men-
tioned in the previous section, the dynamics is described as
) _ dynamics in a space of loops, where the internal degrees of
B. Peierls—Nabarro barrier freedom are averaged out. At the level of the averaged dy-
The notion of the Peierls—Nabarro barrier of a localizednamics, a Peierls—Nabarro potential can be introduced in a
excitation arises naturally when mobile localized excitationgvell-defined way. The interested reader will find in Ref. 35 a
are studied irdiscretesystems. It is associated with the lack tutorial introduction to these ideas for Hamiltonian systems.
of continuous translational invariance, the symmetry group ~ Our focus here is on forced-damped discrete breathers
of translations being discrete. If we consider a solitary exci-and it is important to realize the formal and conceptual dif-
tation, the part of the energy not associated with kinetic enferences this makes regarding the notions of the Peierls po-
ergy of translation can depend on the positionf the soli-  tential and depinning energy. In a periodic solution, an exact
tary excitation. Recording this part of the energy as abalance of input powetby the external forcingand dissi-
function of X while moving the excitation from one lattice Pated power is kept over a period of tifyg, and instead of
site to the next usually results in a nonconstant graph. Thenergy conservation, only power balance holds. Moreover,
difference between the maximum and the minimum of thisthe stroboscopic section of the phase space is partitioned in
curve can be considered as the Peierls—Nabarro barrier, i.@asins of attraction, and the structure of basin boundaries,
the minimum energy necessary for shifting the excitationcan be seen as a net of barriers to dynamics. Pinned periodic
from one site to the next. If the total energy of the excitationdiscrete breathers are fixed points of the stroboscopic map,
is below this barrier, i.e., if the kinetic energy is too small, While the sections of attractor mobile breather trajectories are
then the excitation is trapped at one site and cannot travépenerally expected to fill a continuous line for noncom-
through the system. The heigtand shapeof the barrier ~mensurate velocities.
depends on the shape of the solitary wave. In the case of a A simple scenario, that occurs for the forced and damped
breather, this shape is subject(guasjperiodic oscillations, FK model in some ranges of couplings, is sketched in Fig. 8.
so the energy barrier the breather has to cross in order to géhere, a sequence of alternating attractor-saddtable-
from one lattice site to the next depends on the internal deunstablg¢ —pinned  breathers located at positions
grees of freedom of the breather. A more elaborate discussian.,X;, X} ,X,,X5 ,... coexist with a stable attractin(t)
can be found in Ref. 34. Whereas it is therefore not possiblenobile discrete breather solution. Certain directions
to define a Peierls—Nabarro potential for breathers in a waye, ,e,}=|€) in the tangent space of an attracting pinned
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FIG. 9. Single-breather velocity as a function of the couplhgin the
FIG. 8. Simple scheme of alternating stable—unstable pinned breathers wifSrenkel—Kontorova model. The values of the rest of the parameters are
their basins of attractiottwhose boundaries are dashed lineexisting  ,—0.02, F,.=0.02, w=0.2. In the shaded region the breathers exhibit
with a mobile breather solutiofsolid line). A perturbation strong enough irregular motion. This figure has been taken from Ref. 20.
along the|€) direction is able to move the breather locatedKatinto the
basin of attraction of the mobile discrete breather.

involved, that are connected to the symmetry-breaking pitch-
solution(like X, in Fig. 8 bring this into the basin of attrac- fork bifurcation atCp; discussed in Sec. IV. The slower
tion B(X(t)) of the mobile breatherX(t)}, ie., {X} breathers, for 0.88C<0.96 arose in the continuation with
Ao B(X(1)) for some. Let us callx ( ’>) thé mini- respect toC without any additional perturbation required.
mal gtrin thin the|€) direct.ior) to turn thé Tnned solution They have been termespontaneous slow breathertn a
into mobi?e and then defina* as the in;;\ (|e)). This narrow C-range aroundC=0.89 both types of breather co-

. ' . c X c o exist. BeyondC=0.96 the breathers are again pinned. In the
quantity, measuring the “shor.t'est"'dlstanc.e f,rom, the plnnedregion 0.6<C<0.72 MBs exist, but their motion is irregular,
breather to the l_)asm Of. mob_|I|ty, IS the_ dissipative Cou_nter'with apparently random sudden changes in velocity. Bound-
part of the quantity\; defined in the previous paragraph, i.e.,

ary crisi e of bifurcations have been invok&m explain
the threshold strength of a depinning perturbation. As befor y crisis typ rurcations nav thd xpal

is regime of erratic mobility.
it could generally depend on the choice of tifmeoduloty,) s regl ! Yy

: . The MBs have phonon tails decaying in space. A Fourier
of trle stroboscopic sect|on.' On the othe'r hangﬁ(xl) anq analysis of the oscillations in the tails reveals spectra that can
E(XT) denote some potential energyot including the ki-

) f the breath i ted Witk be interpreted as Doppler-shifted combination frequencies of
netic Snergy of the breather trans al)(m;sougte WItK: — the driving frequency and2vy,, as already indicated above.
andXj (pinned attractor and saddle, respectiyalge could

: ; ; For the parameters used in this reviéthere is no commen-
arguably define the Peierls—Nabarro barrier for breathe P

§urabi|ity between these frequencies, so the MB is a quasi-
; " . ,
shifts as&(X;) —£(X,), but the use of it has to be connected periodic solution. Due to the Doppler-shifts, the tails of a

to the power balance governing the dynamics. MB are asymmetric. The phonon tails play an important part

_Othe.r different scenarios are possible. Nota_bly, as d_el'n collisions of two breathers, as the interaction between the
SCI’.Ibed in Sec, !VA’ we have obsgrved t'he situation 1Ny oaihers is mediated by phonons. Numerical experiments
W.h'Ch no stable p|nngd breather solutions exist, but only.runéhow that there are basically four types of final states for a
ning s_t_able DB solutions are found. N(_)ne of the PrevioUSeyjision or scattering process of two MBs: the breathers can
qgantl_tles_seem to make much sense in t_erms of ut|I_|ty, Mebounce from each other, one of the breathers can be anni-
th's_ situation when no reference stable pinned solution hilated, both breathers can be destroyed, or the breathers can
availaple. form a “bound state.” A bound state is a configuration of two

) . o ) breather cores situated at a certain distance from each other,
C. Mobile breathers in the dissipative and driven FK propagating along the system together. Bound states of ve-
model locity zero have also been fouRd.

As mentioned above, in this model mobile breathers do  The simulation of scattering processes shows that at
exist as attractors of the dynamics. In Fig. 9, taken from Reflarger separation the propagation of the colliding breathers
20, the velocity for the MBs is shown as a function of the seems to be unaffected by their respective collision partner,
coupling C. The other parameters have been=0.02, and that there is a kind of “effective range” of the interaction
w=0.27, andF ,.=0.02. There exists two types of MB that (=160 where the system selects one of the four types of
are clearly distinguishable by the range of their velocitiesfinal states. However, it has been found also that the final
The faster breathers, found for 8:&£<0.56 and 0.#C  state can be changed by noise so weak that no thermal fluc-
<0.88 have been created by perturbing a pinned breathéuations are visible in the energy distribution of the system
according to(39). These breathers are therefore called on a scale set by the energy peaks of the breather cores.
duced fast breatherdt is this procedure, and the eigenvector Moreover, though the breather tails are exponentially
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W77 7 1 7 7 T 7 T [ § T ¢ The existence of bifurcation(pitchfork, Naimark-

A R A A - Sacker, period doubling, ejdn the the continuation path of
DB'’s, where new branches of localized solutions emerge,
originates DB’s with new properties: mirror-symmetry
breaking (i.e., asymmetrig quasiperiodic, and chaotic dis-
crete breathers appear as attractors of the nonlinear dynamics
in some ranges of the models parameters. While quasiperi-
odic and chaotic DB’s are impossible as exact solutions in
Hamiltonian systems, intrinsic localization has been shown
to persist in forced-damped systems under quasiperiodic and
even chaotic instabilities of the breather core.

We have motivated the use of a collective varia¥léhe
breather positionparametrizing the branches of asymmetric
DB'’s. This collective variable assumes a prominent role in
the description of mobile localized excitations, leading to the
FIG. 10. Values of distance and velocity for bound states. The position o iscussion of the concepts of the Peierls—Nabarro barrier and
the breathers was determined every 5000 time units, up to a total of 5000 . . . .. .
time units. This gives 10 values for the velocity and(10+initial) for the epinning energy. Branches of attra_\ctlng r_nOb”e dissipative
distance. The average of these values enters the diagram, error bars denotld’s have been numerically continued in the Frenkel-
one standard deviation. The dashed line indicates the velocity of a singikontorova model with periodic driving and viscous damp-
breather(parametersC=0.890,a=0.02,F ,.=0.02, w=0.27; system size: ing. These mobile DB's are capable of forming two-breather
1000 particles The dotted lines are spaced equidistantly. . . . .

bound states in numerical scattering experiments.
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