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Abstract. Modelling DNA is useful for understanding its properties better but it is also challenging
because many of these properties involve hundreds of base pairs or more, or time scales which are
much longer than the time scales accessible to molecular dynamics. It is therefore necessary to develop
models at a mesoscale, which include enough details to describe the properties of interest, for instance
the biological sequence, while staying sufficiently simple and realistic.

We discuss here two examples: a dynamical model to study the mechanical denaturation of DNA,
which probes the sequence on various scales, and a model for the self assembly of DNA which
describes the formation of hairpins and allows us to study its kinetics.

1. Introduction

When they proposed the famous structure of DNA, Watson and Crick supported
their analysis by building a model of the molecule. One may wonder whether
this approach, which has been so fruitful for the static case can also be used to
investigate the dynamical properties of DNA, so important in many biological
processes.

The dynamical properties of DNA can be investigated by computer simulations,
but, although molecular dynamics and computers have made tremendous progress,
all-atom simulations of DNA are still severely limited. To study most of the bio-
logical processes it is necessary to model DNA at a scale of hundreds or thousands
of base pairs, which can only be done with a description that does not attempt to
reach the atomic resolution. While such models may look simpler because they do
not carry all the fine details of the molecule, their design raises difficult challenges:
how to select the degrees of freedom that must be included, how to determine the in-
teraction potentials between the components of these models at a mesoscale, larger
than the atomic scale but still small enough to describe the biologically relevant
properties of DNA?

Besides the possibility for carrying out calculations that would not be possible
on an all-atom model, the development of simpler models is also useful to determine



274 S. CUESTA-LÓPEZ ET AL.

what are the degrees of freedom which are actually controlling some specific prop-
erties of DNA. If a model is able to properly describe these properties, it indicates
that it catches the phenomena that govern them.

To establish a DNA model, the first step is the selection of the appropriate
scale. The answer depends on the properties of interest. For instance, to analyse
the force-extension curves of DNA, which have been measured in single molecule
experiments, the model can ignore all the internal details of the molecule and
describe it as a flexible rod or a flexible polymer chain. Here we are interested in
questions which are of biological relevance so that the model cannot ignore the
base pair sequence which contains the genetic code. Hence the scale of the model
must not be larger than the base pair. It may be tempting to select an atomic scale
which would allow us to study very precisely the dynamics of all the atoms that
make up the molecule. This level of modelling, generally referred to as “molecular
dynamics”, which has been extensively used for DNA [1], requires huge computing
facilities to investigate the dynamics of the molecule on a scale larger than a few
tens of base pairs and time scales of the order of nanoseconds. Our goal here is
different because we are interested in properties of DNA which involve tens or
hundreds of base pairs such as the mechanical denaturation of the double helix, or
may be very slow at the molecular time scale such as the closing of a DNA hairpin.
All atom-simulations would be unpractical.

The goal of this paper is to show that some properties of DNA can be properly
described at a scale intermediate between the micro-scale of the elastic string and
the atomic scale. The “meso-scale” that we consider is the scale of the base pair,
where a single degree of freedom is used per base pair. This is a drastic simplification
with respect to the atomic scale, but the description is however detailed enough to
include the genetic code and recent results suggest that the biological relevance of
such models is quickly growing as the models improve [2].

In order to discuss the validity of this “mesoscale” approach we shall focus our
attention on two cases for which experimental results are available, and compare
the output of the modelling with these results. We have chosen the dynamics of the
mechanical opening of DNA [3, 4] and the fluctuations of DNA hairpins [5].

2. Mechanical Unzipping of DNA

The mechanical opening of DNA was first proposed by Viovy et al. [6] as a pos-
sible approach to determine the base sequence. It appears that it is not possible to
proceed a base at a time, so that only some information on the sequence averaged
on a scale of hundreds of bases can be obtained. These experiments raise questions
concerning possible dynamical effects such as the role of the fluctuational opening
of DNA on the results [7] because they involve out-of-equilibrium properties of the
molecule. Current experiments are slow so that out-of-equilibrium effects can prob-
ably be neglected in most of them, but such a fundamental problem should however
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not be forgotten, particularly if faster experiments on smaller DNA fragments are
performed by pulling with an atomic force microscope.

Two different approaches can be used, and they are not probing the same thermo-
dynamic ensemble [8]: one probes the constant-extension ensemble, while the other
one probes the constant-force ensemble. The first experiments were performed by
pulling at constant velocity [9] and while the opening of the two strands moved
along the molecule, the variation of the force was recorded. In an experiment that
opened about 10000 base pairs, a good correlation was observed between the mag-
nitude of the force required for the opening, and the content of Guanine-Cytosine
(GC) with respect to the Adenine-Thymine (AT) base pairs, computed by an average
over 100 base pairs. This makes sense because the GC base pairs are linked by 3 hy-
drogen bonds, while the AT are linked by only two. The constant force experiments
[4] are even more spectacular because they exhibit multiple metastable interme-
diates. The opening is characterised by rapid jumps and very long pauses, which
can last for minutes or more. These experiments are explained by the existence of
very deep local minima in the macroscopic barrier to unzipping which are found
by coarse-graining thermodynamic data deduced from the fitting of experimental
melting curves.

These results raise several questions:
– although observations are made on single molecules, the resolution of the exper-

iments is of the order of hundreds or thousands of base pairs. Thus they probe
DNA on a large scale. However experiments show that local effects on DNA
thermal denaturation curves can be very significant since the melting curves of
DNAs which differ by one base pair out of several hundred can be distinguished
[10]. As mechanical denaturation can be expected to show similar properties, an
analysis at a smaller scale would be useful.

– understanding the properties of DNA from basic principles rather than through
empirical parameters would be very interesting, although it might be a challenge.
Our goal in this section is to show that a simple model of DNA can, at least

partially, answer these questions.

2.1. A SIMPLE MODEL FOR NONLINEAR DNA DYNAMICS

Since we intend to model DNA from “first principles” we have to start from a
description in terms of the elements that make up the molecule, and their interaction
potentials. As discussed above we do not want to choose elements as small as the
atoms, but rather describe the molecule at the scale of a base pair. We can start
from a very simple dynamical model of DNA, which allows a qualitatively correct
description of the thermal denaturation of DNA [11, 12] and turns out to provide
results for the study of DNA thermal denaturation of short DNA sequences in good
agreement with experiments [13].

The model is an extension of the Ising models which describe a base pair as
a two-state system that can either be closed or open. It uses a real variable yn
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to describe the stretching of the nth base pair, which can increase continuously
to infinity if the two bases separate completely as in DNA denaturation or take
negative values, corresponding to a compression of the bond linking the bases with
respect to its equilibrium length. Large negative values are however forbidden by
steric hindrance introduced in the model by the potential linking the bases in a
pair.

Of course such a description of the state of a base pair by a single variable
cannot claim to describe the geometry of the molecule, and it is not our aim here.
The model should be viewed as a truly minimal model. Including a variable which
describes a displacement instead of a two-state system is essential for two reasons:
we want to study the dynamics of the opening and thus it is necessary to model
intermediate states between the open and closed base pair, and we want to establish
the model on “first principles”, which, in this case means that we would like to be
able to express interaction potentials evaluated from our knowledge of the physical
interactions in DNA, even though giving them quantitative values for a mesoscopic
model is not trivial, as discussed below.

The model is shown on Figure 1 and it is defined by its Hamiltonian

H =
∑

n

p2
n

2m
+ W (yn, yn−1) + V (yn), with pn = m

dyn

dt
, (1)

where m is the reduced mass of the bases.
The potential V (y) describes the interaction between the two bases in a pair. We

use a Morse potential

V (y) = D(e−αy − 1)2, (2)

where D is the dissociation energy of the pair and α a parameter, homogeneous to the
inverse of a length, which sets the spatial scale of the potential. This expression has

Figure 1. The simple dynamical model for DNA nonlinear dynamics, described by
Hamiltonian (1).
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been chosen because it is a standard expression for chemical bonds and, moreover,
it has the appropriate qualitative shape.
– it includes a strong repulsive part for y < 0, corresponding to the sterical hin-

drance mentioned above,
– it has a minimum at the equilibrium position y = 0,
– it becomes flat for large y, giving a force between the bases that tends to vanish,

as expected when the bases are very far apart; this feature allows a complete
dissociation of the base pair, which would be forbidden if we had chosen a
simple harmonic potential.

Other shapes may however be considered to get more quantitative results on the
dynamics of the fluctuations of the bases. There is actually a potential barrier for
reclosing because, when an open base comes back in the stack in the closed state,
it has to force its way within the stack of the neighbouring bases. This effect can
be described by a modification of the potential V (y) [17].

The potential W (yn, yn−1) describes the interaction between adjacent bases
along the DNA molecule. It has several physical origins:
– the presence of the sugar-phosphate strand, which is rather rigid and connects the

bases. Pulling a base out of the stack in a translational motion tends to pull the
neighbours due to this link. One should notice however that we have not specified
the three dimensional motion of the bases in this simple model. An increase of
the base pair stretching could also be obtained by rotating the bases out of the
stack, around an axis parallel to the helix axis and passing through the attachment
point between a base and the sugar-phosphate strand. Such a motion would not
couple the bases through the stretching of the strands but their torsional rigidity
would be involved. The potential W (yn, yn−1) is an effective potential which can
be viewed as averaging over the different possibilities to displace the bases.

– the direct interaction between the base pair plateaux, which is due to an overlap
of the π -electron orbitals of the organic rings that make up the bases.

The choice of W (yn, yn−1) is crucial for the validity of the model. A simple harmonic
potential W (yn, yn−1) = 1

2 K (yn − yn−1)2 is not acceptable. Such a potential is
sufficient to lead to a true phase transition between double-stranded and single-
stranded DNA, i.e. a true phase transition in one dimension. This is interesting
from the statistical physics point of view [11, 14], but it yields a very smooth
denaturation, occurring over several tens of degrees, which does not agree at all
with the observations of a sharp denaturation. A more elaborate potential has to be
chosen, and it turns out that the potential

W (yn, yn−1) = 1

2
K

(
1 + ρe−δ(yn+yn−1)

)
(yn − yn−1)2 (3)

meets the required conditions [12, 15]. When both interacting base pairs are closed
(yn and yn−1 small), the potential behaves like a harmonic potential with the cou-
pling constant K (1 + ρ). If either one of the base pairs is open (yn or yn−1 large)
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the effective coupling constant drops to K . Thus, with this anharmonic potential,
the stacking interaction is significantly reduced when the base pairs open. There
are several reasons which explain this behaviour of the coupling along the DNA
molecule:
– The overlap of the π electrons on the plateaus formed by the bases is an impor-

tant part of the stacking energy, which is modified because the breaking of the
hydrogen bonds leads to a redistribution of the π electrons.

– In the open state the plateaus of the bases are displaced with respect to the regular
stacking of double-stranded DNA, and the average overlap of consecutive bases
is reduced.

– In the double helix, the rigidity of the strands which contributes to the collective
behaviour of DNA is high because the hydrogen bonds between the bases prevent
many rotational motions around the single bonds that make up the stand. As soon
as the interaction is broken, rotations become possible and the DNA strands start
to behave like RNA, which is very flexible.
Although the analytical form that we choose for W (yn, yn−1) is certainly not

crucial, the physics behind the nonlinearity of W, which makes it become weaker
when the bases pairs break, is essential to the validity of the model. This illustrates
the importance of setting up appropriate interactions when a mesoscale model is
designed. The nonlinear stacking allows a very large increase in the fluctuations of
the strands when base pairs open, thereby increasing the entropic effects. This is
what makes the DNA thermal denaturation so sharp [15].

2.2. SEQUENCE AND MODEL PARAMETERS

In order to test the properties of the model to detect specific features of the DNA
sequence, we studied an artificial sequence obtained by the juxtaposition of two
characteristic sequences extracted from the DNA of bacteriophage T7, a termination
sequence, i.e. a sequence which signals the end of a gene, and a promoter sequence,
which, on the contrary, corresponds to the beginning of the gene. The promoter is a
place where DNA opens to allow the beginning of the transcription of the gene, and
thus it can be expected to have specific properties regarding opening. The sequence
is repeated twice in our test model, giving a set of 154 base pairs. It allows us to test
the reproducibility of the results and provides a longer DNA chain for the simulation
of the mechanical opening. The promoter sits between sites 56 and 77, and between
sites 133 and 154. Figure 2 shows the sequence used in our simulations.

The choice of the potential parameters is difficult because the potentials entering
in the model are effective potentials, which combine many actual interactions. For
instance V (y) includes the hydrogen bonds between the bases but also the repulsion
between the charged phosphate groups, which is partly screened by the ions in
solution. However, physics can give an estimate for a typical set of parameters,
which can then be refined by comparison with experiments. For V (y) this leads
to the following estimate: D = 0.03 eV, which is slightly above kB T at room
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Figure 2. Sequence used in the simulation of DNA mechanical denaturation. A terminator
(bases 1–55 and 78–132) and a promoter sequence (bases 56–77 and 133–154) of bacteriophage
T7 are repeated twice to give a sequence of 154 base pairs.

temperature (kB being the Boltzmann constant) and α = 4.5 Å−1. For a stretching
of the base pair distance of 0.1 Å, these parameters give a variation of energy of
0.006 eV, which is consistent with the values that can be expected for hydrogen
bonds. A typical upper value for K is K = 0.06 eV/Å2, which corresponds to a
weak coupling between the bases, as attested by the experimental results showing
that proton-deuterium exchange can occur on one base pair without affecting the
neighbours. The average mass of the nucleotides is 300 atomic mass units. For our
simulations we work with a system of units adapted to the scale of the problem:
lengths in units of � = 1 Å, energies in units of e = 1 eV, mass in units of m0 = 1
atomic mass unit. This defines a natural time unit t0 through e = m0�

2t−2
0 , which

is equal to t0 = 1.018 × 10−14 s. This is of the order of magnitude of the period of
the vibrational motions of the base pairs.

However the parameter values that we listed above are only averaged values for a
hypothetical DNA homopolymer. To describe the base-pair sequence, they must be
refined to make the difference between the two types of base pairs, AT linked by 2
hydrogen bonds, and GC linked by 3 hydrogen bonds. This has been done by Campa
and Giansanti [13] who compared experimental curves for the denaturation of short
DNA sequences with the denaturation curves which are given by the model. In their
study the stacking interaction parameters have been considered as independent of
the sequence, so that the sequence only enters into the parameters of the potential
V (y). Their optimisation leads to DAT = 0.05 eV, DGC = 0.075 eV (corresponding
to a ratio 3/2 corresponding to the ratio of the number of hydrogen bonds), and
αAT = 4.2 Å−1 αGC = 6.9 A−1. In the following we shall use these parameters for
the potential V. For the stacking interaction, ref. [13] proposes K = 0.025 eV Å−2,
ρ = 2 and δ = 0.35 Å−1, however these values are harder to confirm from physical
arguments due to the complicated nature of the stacking interaction. This is why
we carried out some tests by varying the stacking.

2.3. MELTING OF AN INHOMOGENEOUS DNA SEQUENCE

In order to test the ability of the model to simulate an actual DNA sequence, we
first examined the behaviour of the model at constant temperature without any
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unzipping force. The simulation is carried with a multi-thermostat Nosé method
[16], which we found efficient to reach a good thermalization. We use a time step
�t = 0.05t0, i.e. �t ≈ 0.5 × 10−15 s. We start from an initial condition with a
random velocity distribution corresponding to an initial temperature of 100 K, which
is first equilibrated for 2.5×105 time steps, then heated to the working temperature
with a temperature ramp lasting 2.5 × 105 time steps and again equilibrated for
2.5 × 105 time steps before any recording is made. A simulation involves 10 runs
with different initial conditions, and the data are collected during 1 ns for each run.
In these studies of the melting, the model is not subjected to any external force. Its
right end (n = 154) is fixed and its left end (n = 1) is free.

One issue is the appropriate choice of the nonlinear coupling parameters which
are hard to determine a priori. Figure 3 shows the statistics of opening for the
base pairs along the chain for several sets of K and ρ parameters which give the
same effective coupling constant K ′ = K (1 + ρ) = 0.06 eV Å−2 when both
base pairs are closed. The opening events are counted by probing each base every
0.5 ps, and counting a base pair as open when its stretching yn exceeds 2 Å, a
value corresponding to the plateau of the Morse potential. Although this value is
arbitrary, the results are not qualitatively changed by changing it, provided we select
a value which is at least beyond 2yinflex, where yinflex is the value of y corresponding
to the inflexion point of the Morse potential. For small values of ρ the coupling
constant does not change very much when DNA is open or closed, while for ρ = 2,
the coupling constant drops from 0.06 to 0.02 eV Å−2 when either of the two
interacting bases is open.

Figure 3. Statistics of the opening of the base pairs in an inhomogeneous DNA for various
values of the nonlinear coupling parameters. The effective coupling constant K ′ = K (1 + ρ)
is kept constant and equal to 0.06 eV Å−2. The arrows point to the promoter regions in the
sequence.
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The first point that should be noticed is that the results on the opening appear to
be robust: the two halves of the model, which have the same base-pair sequence in
our model (see Figure 2), show very similar patterns of opening. The results cannot
be expected to be strictly identical on both halves because for several reasons: (i) the
boundary conditions on both ends of the chain are not the same, (ii) due to the limited
time of the simulation we do not get exactly equilibrium properties, and dynamical
effects may play some role. However our results show that the reproducibility of the
results for a given sequence is good. Figure 3 shows the importance of the nonlinear
coupling. For small values of ρ the fluctuational opening of the molecule varies only
slightly along the sequence, while for ρ = 2 very large variations are observed. It is
interesting to notice that the promoter region is the region where the largest number
of opening events is found. This result is consistent with some recent findings using
the same mesoscopic model of DNA to look for promoters in actual DNA sequences
[2] but different diagnostics because these studies were explicitly looking for open
bubbles. They found that promoters have a higher probability of opening than
other regions of the sequence, in agreement with experimental observations. The
simulations raise interesting questions about the collective effects which control
the probability of opening. A simple view would conclude that any series of AT
base pairs, which are weaker than the GC pairs, would lead to a high probability of
opening. This is of course partly true because examining the regions of high opening
probability on Figure 3, one indeed finds that they are in AT rich regions, but the
actual opening probability relies on more subtle effects because the promoter region
between indices 56 and 60, with 5 AT pairs shows a slightly higher opening that
the region 42–47 of the terminator which has 6 adjacent AT pairs. Understanding
these subtleties in DNA opening is still an unsolved problem, which would be of
high practical interest.

2.4. SIMULATING THE MECHANICAL UNZIPPING

Studying the constant force mechanical unzipping requires an extension of the
model. Figure 4 shows the configuration that we have chosen to mimic this exper-
iment. As the model only has one degree of freedom per base pair, one strand can
be viewed as fixed, while the other one is pulled by a constant force F applied to a
bead of mass M and coordinate yM , attached to DNA by a molecular linker, which
is simply represented by a harmonic spring of constant K0, connected to the first
base pair. The DNA model is still thermalized by a numerical thermostat which
can be either a Nosé thermostat as discussed above, or a Langevin thermostat in
some calculations to allow us to explore another regime of coupling between the
outside medium, i.e. the solution, and the DNA molecule. The bead, being much
more massive (M = 3000 atomic mass unit) and bigger than a DNA nucleotide,
experiences a macroscopic friction force, which is described in our calculation by
an extra term −γMdyM/dt in its equation of motion. The damping has been set to
γM = 100t−1

0 which is 5 times the damping at which a harmonic oscillator made by
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Figure 4. Model chosen for the simulation of the unzipping. A harmonic spring is added to
the DNA chain to simulate the molecular linker which connects DNA to the bead on which the
force F is applied. Note that the model is drawn to look similar to the experimental setting for
clarity, but everything is one-dimensional, and all displacements, whether they are stretching
yn of the bases of displacement yM of the pulling bead, are along the same direction.

the bead and a spring of coupling constant K = 0.04 eV/Å−2 becomes overdamped.
This corresponds to the physical situation where the motion of the bead in the fluid
is highly damped by the hydrodynamic flow. On our numerical experiments, the
applied forces have never been smaller than 50 pN although experiments may use
smaller forces because, in spite of the simplicity of the model, the time range that
can be studied in a simulation is limited. Small forces lead to an unzipping too
slow for the numerical study. For F = 50 pN, the mechanical opening of the DNA
model occurs typically in 300 ns.

Figure 5 shows the propagation of the opening when we apply a force F = 51 pN,
measured on one hand by the number of broken base pairs, defined as for the melting
by yn > 2 Å, and, on the other hand, by the displacement of the pulling bead versus
time. Large fluctuations of the number of open pairs are observed. They are not
statistical fluctuations associated to different realisations with different samples
because Figure 5 displays the results of a single numerical simulation, but they
come from dynamical effects. With a force of F ≈ 50 pN the opening is slow and
the strand which is already denaturated is not under strong tension. Its fluctuations
allow temporary re-closings of some segments of the molecule. Such fluctuations
involve 10 to 30 bases so that they are well below the resolution of the experiments.

At the scale of our simulations, the propagation of the opening shows periods
of fast progress separated by pauses where the unzipping stops or slows down very
much. Constant force unzipping experiments [4] find similar phenomena, but, in
the experiments they appear at a much larger scale of hundreds or thousands of
base pairs. The opening pattern is clearly related to the sequence: series of AT base
pairs lead to fast unzipping while GC rich regions lead to pauses. Even a sequence



CAN WE MODEL DNA AT THE MESOSCALE? 283

Figure 5. Propagation of the unzipping in the sequence of Figure 2 driven by a constant force
F = 51 pN. The squares show the number of open bases versus time (left scale) and the full
line shows the displacement of the pulling bead (right scale).

of 2 GC base pairs in a series of AT leaves a detectable signature in the motion of
the pulling bead, as seen for instance at the level of the promoter.

Although the timing of the opening may vary significantly from one numerical
experiment to another carried with the same parameters but a different pattern of
fluctuations, the shape of the pattern is rather well preserved, showing pauses or
fast opening in the same regions of the sequence. This indicates that the unzipping
pattern is actually probing the sequence and not simply the thermal fluctuations of
the sample. Figure 6 shows that the details of opening pattern are sensitive to the

Figure 6. Propagation of the unzipping for different values of the pulling force. For each
force (F = 51 pN, thick lines and F = 53 pN, thin lines) the figure shows the result of two
different numerical experiments carried with Nosé thermostats using different realisations of
the fluctuations.
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exact value of the force since F = 51 pN and F = 53 pN give distinguishable
patterns, but the general features are preserved. What appears to be more important
is a change in the environment of the molecule, which, in our simulations is mod-
elled by the thermostat. The Nosé thermostat describes an outside medium which
is weakly coupled to the molecule. The results that it yields are similar to results
obtained by a Langevin simulation using a small damping (γ < 0.1t−1

0 , for a damp-
ing force in the equation of motion of the nth base pair written as −mγ (dyn/dt).
In the simulations a stronger coupling to the fluid surrounding the molecule can
be described by a Langevin thermostat using a larger damping, such as γ = 1. It
modifies drastically the patterns, which become closer to the experimental patterns:
long pauses (of the order of 5 × 106 time steps for instance) are observed, followed
by a quick unzipping of about 60 base pairs. This points out the important role of
the environment, which could perhaps be probed in experiments too, by varying the
viscosity of the solution as it has been done for some studies of protein dynamics.
This also raises the question of the validity of numerical simulations of a thermal-
ized biomolecule at a mesoscale. In this case, the thermostat plays a more crucial
role than in a microscopic simulation, where all the water molecules are present.
For a mesoscopic model the choice of an optimal thermostat may be difficult. When
the bases are stacked they are only weakly exposed to the solvent and a small value
of γ (or a simulation with the Nosé thermostat) is probably appropriate, but when
the bases are unstacked a significantly larger damping should be used [17].

2.5. ANALYSING THE MECHANICAL UNZIPPING

In the previous section, mechanical unzipping was viewed as a dynamical process,
but it can also be viewed as an out-of-equilibrium transition between a closed and
an open state. Figure 7 illustrates this point of view by showing the phase diagram
of the DNA sequence of Figure 2 in the (F, T) plane for two values of the interaction
parameter ρ.

As expected the transition temperature decreases when F increases. It can even
drop to 0 for a sufficiently large force. In this case the denaturation is purely
mechanical and can be expected to happen when the effective potential in the
presence of the force, Veff(y) = D[exp(−αy) − 1]2 − Fy looses its minimum, i.e.
for Fc = αD/2. For an inhomogeneous model things are more complex, but if
we use the potential parameters of an AT base pair, we get Fc = 168 pN, while
a GC pair would open mechanically for Fc = 414 pN. The frontier separating
the double-stranded region from the melted region shows a sharp increase of the
force required to open the molecule at low T, which is not surprising because, in
the limit of vanishing temperature, a single GC pair would be enough to prevent
a full separation of the strands for any force below 414 pN. What is noticeable is
that, although the transition temperature under force depends on the value of ρ, this
effect is weak. The global behaviour of the system appears to be less affected by
the nonlinearity of the coupling than the properties concerning local opening.
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Figure 7. Phase diagram of DNA under traction as a function of the pulling force F and
temperature T. Below the lines (low F, low T domain), DNA is in the double helix state,
while above the two strands are separated. The sequence is the sequence shown in Figure
2. The potentials V (y) have the values listed for AT and GC base pairs above. The coupling
constant is K = 0.04 eV Å−2 and ρ = 0.5 (square symbols) or and ρ = 2 (circles). The open
symbols correspond to simulations carried at constant temperature and increasing force, until
denaturation was found. The filled symbols correspond to simulations at constant force F, and
increasing temperature until the denaturation was observed. The lines are not based on a model
calculation, and should be viewed as a guide for the eye only.

In order to understand how the denaturation moves along the DNA molecule,
it would be useful to evaluate the energy cost for the opening of a given region of
the molecule. A crude estimate would be to sum up the Morse potential energies of
the broken bases, but this is a local analysis which does not consider any collective
effect in the opening. Another possibility, which is still approximate but turns out to
be fruitful, is to examine what the equations of motion of the model can tell us about
the opening. For a homogeneous DNA chain it is possible to analytically compute
the shape of the “domain wall” which separates a closed part of the molecule from
the part which has been opened by pulling. For this calculation it is convenient to
move to a dimensionless set of variables by introducing the dimensionless stretching
Y = ay and measuring the energies in units of the depth D of the Morse potential so
that the Hamiltonian becomes H ′ = H/D. We can also introduce a dimensionless
coupling parameter S = K/(Da2) and a dimensionless time τ =

√
Da2/mt .

For the homogeneous chains where the parameters do not depend on the site, all
these quantities are defined without ambiguity and the dimensionless Hamiltonian
becomes

H ′ =
∑

n

1

2
P2

n + 2

S
(Yn − Yn−1)2 + (e−Yn − 1)2 with Pn = dYn

dτ
. (4)
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This Hamiltonian is a simplified form of Hamiltonian (1), in which the anharmonic
interaction potential W has been replaced by its harmonic approximation to allow
analytical calculations. If ρ �= 0, the value of the coupling constant K entering
in S should actually be K ′ = K (1 + ρ) to get the best approximation. From this
Hamiltonian one can derive dimensionless equations of motion, which depend on
a single parameter S.

In the continuum limit approximations, these equations become

∂2Y

∂t2
− S

∂2Y

∂x2
+ ∂V (Y )

∂Y
= 0 with V (Y ) = (e−Y − 1)2. (5)

This equation has the exact static solution

Y (x) = ln
[
1 + e

√
2/S(x−x0)

]
, (6)

where x0 is an integration constant that determines the position of the solution. It
describes a configuration where one part of the molecule (x < x0) is closed, while
for x � x0 the base pair separation grows linearly with space and the molecule
is fully denaturated. It corresponds to a domain wall between two states of the
DNA molecule. Let us evaluate the energy of this solution for a finite chain of N
base pairs. Sites with an index smaller than x0 are such that Y � 0. The Morse
potential and the coupling energy between adjacent sites vanish. For sites with an
index larger than x0, Y � 1 so that the Morse potential takes the value +1 while
dY/dx � √

2/S corresponds to a coupling energy 1
2 S(

√
2/S)2 = 1. Therefore

each site with an index larger than x0 contributes to the energy by e = 2. As a result
the dimensionless energy of the domain wall is

E+
P = 2(N − x0) + O(N 0), (7)

where the term O(N 0) corresponds to the core of the wall (x � x0) where Y evolves
smoothly from the bottom of the Morse potential towards the plateau. In the limit
N → ∞ the energy of the domain wall becomes infinite. For finite N, one can notice
that the energy of the wall gets smaller if x0 increases, i.e. if the closed region of the
molecule extends. The solution (6) is thus unstable. It tends to move in the direction
that closes the base pairs. This is not surprising because, if thermal effects are not
taken into account, the stable state of DNA is the closed double helix. This domain
wall solution can be used to compute the thermal denaturation temperature of DNA
[14, 18], but it can also be used to analyse the mechanical opening. An external
force on the N th site can stabilise the domain wall in the open position, and a force
exceeding this equilibrating force will move the domain wall towards opening.

The domain wall solution can be used to scan the energy barrier for opening
as follows. We assume a given domain wall shape, according to Eq. (6) and we
move it within the sequence. For each position its energy is calculated. The energy
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Figure 8. Variation of the energy of a domain wall given by Eq. (6) with S = 0.5 when
it is moved along the sequence shown in Figure 2. The average slope (Eq. (7)) has been
removed.

shows a general trend according to Eq. (7), i.e. it increases as the size of the open
region increases. But, in addition, it varies from site to site because the sequence is
not homogeneous. Removing the average trend, we get thus a pattern of the energy
required to open each part of the molecule. Figure 8 shows the pattern that we get
by selecting S = 0.5.

This pattern is remarkably correlated to the thermal opening pattern of this
DNA sequence. It appears as a “negative” of the thermal opening pattern: the
regions which open easilly thermally are also the regions where the motion of
the domain wall requires less energy. In particular the promoter region appears
as a minimum when we scan the sequence with the domain wall. This approach
appears as a method which could be used to quickly probe a sequence. Basically
it provides an averaging process to evaluate the opening probability, but instead of
being based on some arbitrary weighting, it uses a physical argument to determine
the weighting. This weighting is still approximate because it uses a solution valid
for a homopolymer to probe a molecule with an actual sequence. Moreover the
analytical expression of the domain wall is obtained in the case of a harmonic
coupling. The simulations are performed with the anharmonic coupling but, as the
bases are not wide open in the core of the wall, the effective coupling constant K ′

can be used in the definition of S. In spite of these approximations, the domain wall
gives the correct qualitative shape of the opening. It should however be noticed that
we used a value for S which is significantly higher than the one that would be derived
from the model parameters: for a pure AT sequence SAT = K ′/(DATαAT) = 0.068
and for a GC sequence SGC = K ′/(DGCαGC) = 0.016. When the calculation is
performed with such very small values of S the landscape of energy obtained by
moving the domain wall over the sequence is extremely spiky, showing many small
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Figure 9. Schematic view of the opening-closing fluctuations of a DNA hairpin. A fluorophore
(F) and a quencher (Q) can be used to monitor these two conformations. In the open confor-
mation the fluorophore is far enough from the quencher to be actually fluorescent.

Figure 10. Two configurations of the hairpin model of a lattice. The DNA strand is indicated
by the thick line on the lattice. The hydrogen bonds are marked by the thick bonds connecting
two points of the stand, and the shaded corners represent the bending energy contributions.
The left case corresponds to the perfect closing, while the right figure shows an example of a
mismatched partial closing.

peaks. A larger value of S corresponds to a broader wall and it can be viewed as a
phenomenological way to take into account the thermal fluctuations which broaden
the interface between the closed and open region (Figures 9 and 10).

This calculation amounts to computing an effective potential for the domain wall,
in the spirit of the collective coordinate approach which has been used in soliton
models of DNA [19]. Of course the calculation can be improved if we rely on a
numerical solution in the inhomogeneous DNA. For each position of the domain
wall it is possible to numerically relax its shape before computing its energy, and
moreover the thermal fluctuations can be taken into account in the process, but
such an approach loses part of the interest of the method because it involves heavy
computations.
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3. Self Assembly of DNA Hairpins

3.1. MODEL

DNA hairpin are short nucleotide chains which have, in their two terminating
regions, complementary bases which can therefore self assemble to form a short
double helix called the stem of the hairpin. They can exist in two states, the open
and the closed state, and fluctuate between the two, being mostly closed at low
temperature and mostly open at high temperature [5]. Using DNA chains which
carry a fluorophore at one end and a quencher at the other end, it is possible to
detect the state of the hairpin, which is only fluorescent in its open state. Hairpins
are interesting both for the physicist and the biologists. For the physicist they provide
a simple system to study the self assembly of DNA with two pieces of strand which
are maintained in the vicinity of each other by the loop of the hairpin, so that they
can easily find each other for the assembly. For the biologists they may provide
very sensitive probes for short DNA sequences: a loop which is complementary to
a sequence to recognise can self assemble with it. This prevents the hairpin from
closing and it is detected by fluorescence.

Modelling the fluctuations of a hairpin is more challenging than modelling the
mechanical denaturation of DNA for two reasons:
– the self assembly of a structure is not simply the reverse process of its opening

because the elements must find each other is space and then orient properly with
respect to each other, before actually assembling in a final stage which is the
only stage of the process which can be viewed as the reverse of the breaking;

– the time scales for the assembly can be very long (hundreds of µs for instance),
i.e. many orders of magnitude longer than the typical time scale of the micro-
scopic dynamics of a macromolecule.

For these reasons, even the simple DNA model that we introduced in the previous
section cannot be used for this investigation. We shall introduce a model which is
even simpler, and examine to what extent it is valid to study such a problem.

Our hairpin model is inspired by the lattice models which have been used to
study protein folding. It is a lattice model so that only discrete motions are allowed,
thus it cannot describe the true dynamics of the hairpin. Instead we use a Monte-
Carlo dynamics where the moves are discrete and determined by their probability
at the temperature of the simulation, depending on their energy cost or gain. To
carry such a calculation we only have to specify the energy of the model in each
configuration. As a first approach to this problem we decided to choose the simplest
underlying lattice, a planar square lattice. The interest is that it restricts the number
of accessible states with respect to a more complex three-dimensional lattice, but,
as discussed below, this introduces of course some restrictions on the ability of the
model to describe actual hairpins.

The energy of the DNA strand is assumed to depend on two terms only, a bending
energy which appears when two consecutive segments are at some angle, and the
energy of the base pairs which can form in the stem. The total number of nucleotides
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in the DNA strand is denoted by N. The number of nucleotides which can form the
stem is denoted by ns . In order to specify the kind of pairing allowed in the stem,
each nucleotide of the stem, denoted by index j is affected of a “type” t j . Only two
nucleotides having the same “type” are allowed to form a base pair by hydrogen
bonding. Thus, rather that actually specifying the type of a base (A, T, G, C) we
specify the type of pairing that it can form. The energy of the model is written as

E = n A E A + 1

2

ns∑

j=1

ns∑

j ′=1

e( j, j ′) (8)

e( j, j ′) = δ(t j − t j ′)δ(d j j ′ − 1)a( j)a( j ′)EHB(t j ) (9)

where
– n A is the number of angles in the DNA strand on the lattice, and E A is a positive

model parameter giving the energy costs of a bent. In some calculations, E A may
be different for a bent in the stem or in the loop.

– e( j, j ′) is the pairing energy between nucleotides j and j′ of the stem. The factor
δ(t j − t j ′) enforces the condition that the two nucleotides should be of the same
“type”, δ(d j j ′ −1) indicates that the pairing is only possible if the two nucleotides
are adjacent on the lattice. The factors a( j) and a( j ′) are equal to 1 only if the
nucleotide is available for pairing, i.e. if it is not already involved in another pair.
Otherwise the pairing is not formed and they are set to 0. They are necessary
because some geometries of the chain could put a nucleotide in a position adjacent
to two sites occupied by nucleotides of the same type. Finally EHB(t j ) is the
pairing energy for nucleotides of type t j . It is a negative quantity, which means
that the pairing is favourable because it lowers the energy of the hairpin.
We studied this model using Monte Carlo simulations in the same spirit as the

studies performed on lattice models of proteins, i.e. we generate a random walk
of the DNA chain on the lattice with the condition that the system should be in
thermal equilibrium at temperature T. A configuration of energy E must therefore
have a probability proportional to exp(−E/T ), where T is measured in units of
energy. If the moves are selected in order to stay as close as possible to the actual
motion of a polymer in a fluid, the method can even be used to study dynamical
effects with a fictitious time scale which is simply given by the number of Monte
Carlo steps [20]. For this reason we selected only local motions of the chain. On the
two-dimensional square lattice, there are only three such motions: the change of
the angle between the two segments at one end of the chain, the flipping of a corner
of a lattice cell with respect to the diagonal of the cell and a crank mechanism.
If it does not lead to a clash with another part of the chain, an attempted motion
is accepted with probability P = min[exp(−�E/T ), 1], where �E = E2 − E1

is the difference between the energy after and before the move, using a standard
Metropolis algorithm.



CAN WE MODEL DNA AT THE MESOSCALE? 291

3.2. EQUILIBRIUM PROPERTIES OF THE OPENING-CLOSING TRANSITION

3.2.1. The Transition in the Absence of Mismatch

Let us consider first the equilibrium properties of DNA hairpins in the simple case
when they can only close with a correct matching of the bases in the stem. This
would be the case if the base sequence in the stem forbids any mismatch. In order
to compare with experimental results [21] we considered the case of a stem having
5 base pairs (ns = 5). Since there are only 4 types of bases, at least one has to
appear twice in the stem. Thus the Watson-Crick pairing rules allow at least one
mismatched pairing, but it may be very unfavourable because, if it occurred, the
other bases of the stem would not be paired and may even experience some steric
hindrance. In the model it is easy to strictly forbid any mismatched closing by using
a sequence ti = {1, 2, 3, 4, 5} where all base pairs have different types. Besides
this condition, in our calculations we gave same energy EHB = −1 to all types of
base pairs. This value sets the energy scale, and thus the temperature scale. With
these parameters, the model does not attempt to mimic any real DNA hairpin, but
it is designed to stay as simple as possible in order to exhibit the basic mechanisms
that govern the hairpin properties.

Figure 11 shows the variation of the number of hydrogen-bonded base pairs ver-
sus temperature for chains having different numbers N of nucleotides. The number
of nucleotides in the loop is N − 10 since the stem is always made of two seg-
ments of 5 nucleotides. In these calculations, the bending energy E A has been set
to E A = 0.02, and it has the same value along the whole DNA strand. The results
have been obtained with different initial conditions: we start either from a closed
hairpin or a random coil. Each point in the figure is an average of 100 calculations
with different sets of random numbers to generate the initial conditions and the
stochastic motions of the chains on the lattice, each calculation involving between

Figure 11. Variation versus temperature of the number of hydrogen-bonded pairs in the stem
for hairpins of different lengths N, in the absence of mismatches.
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4×108 and 8×108 Monte Carlo steps (depending on temperature and chain length).
The first 2×107 steps are discarded in the analysis to allow the model to equilibrate
to the selected temperature. For T ≥ 0.15 a good equilibration is achieved, while
results at lower temperatures show some dependence on the initial conditions be-
cause an equilibrium state has not been reached. This is why they are not shown in
Figure 11.

As expected, when temperature increases we observe a fairly sharp decrease
of the number of hydrogen-bonded base pairs. It corresponds to the opening of
the hairpin, which occurs over a temperature range of about 0.2 energy units,
around the so-called “melting temperature” Tm ≈ 0.35, which is well below the
the temperature T = 1 corresponding to the binding energy of a base pair. This
indicates that the entropy gain provided by the opening of the hairpin contributes to
lower the free energy barrier for opening. Increasing the length of the loop lowers
Tm , in agreement with the experiments [21]. It also makes the transition sharper,
which is not observed in the experiments.

The role of the rigidity of the loop can be tested by changing the value of the
bending energy EA for all the bends in the loop, without changing its value in the
stem. Figure 12 shows that a more rigid loop leads to an opening at lower tempera-
ture, in agreement with the experimental observations [21]. However the variation
of Tm given by the model appears to very small, and moveover, as discussed below,
the effect of the rigidity of the loop on the thermodynamics of the hairpin is not

Figure 12. Effect of the rigidity of the loop on the opening of the hairpin: variation versus
temperature of the number of hydrogen-bonded pairs in the stem for loops with different
bending energies E A = 0.02 and 0.60, in the absence of mismatches. In the stem the bending
energy has been set to E A = 0.02 for both calculations. The two sets of points for E A = 0.6
(crosses and squares) have been obtained in two independent calculations, with different sets of
temperatures and different initial conditions. The crosses show results obtained with a closed
hairpin initial condition, while the squares have been obtained with random initial conditions.
Each point on this figure is an average over 100 sets of initial conditions and random numbers.
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correctly described in our model. This points out some limitations of the simpli-
fied model, although a quantitative comparison with the experiments is difficult
because, in the experiments, the rigidity was varied by changing the bases from T
to A. The larger purine bases A are assumed to give a higher rigidity to the strand
but this could only be related to the variation of EA by extensive all-atom numerical
simulations [22]. Moreover, the role of base stacking in the loop is certainly more
complex than the simple change of the rigidity of the chain that our simplified
model can describe.

3.2.2. Role of the Mismatches

One feature of DNA hairpins is that, unless they have a specifically designed se-
quence, they may close with a wrong pairing in the stem (see Figure 10). These
imperfect, mismatched, closings have a higher energy that the perfectly closed
hairpin, but they can be very long-lived.

They affect the opening-closing transition as shown in Figure 13 which compares
the melting curves in the presence and in the absence of mismatches. In order to al-
low mismatches, the sequence of bases of the stem has been set to ti = {1, 1, 1, 1, 1},
i.e. all base pairs are of the same type so that many mismatched pairings are pos-
sible, with 1, 2, 3, 4 hydrogen-bonded base pairs. In this case we show the mean
value 〈d〉 of the distance between the first and last nucleotide of the chain rather
than the number of hydrogen-bonded stem base pairs because 〈d〉 provides a more
complete picture of the configuration of the hairpin.

Figure 13. Comparison of melting curves with and without mismatches. The mean value 〈d〉 of
the distance between the first and last nucleotide is plotted versus temperature. The chain has
N = 20 nucleotides, with EH B = −1 for all base pairs of the stem, Ea = 0.02. The squares
show data without mismatch (ti = {1, 2, 3, 4, 5}), while the circles and crosses show data with
mismatches (ti = {1, 1, 1, 1, 1}). In this case two sets of calculations have been performed.
The circles have been obtained with 8 × 108 Monte Carlo steps, while the crosses involve only
4 × 108 Monte Carlo steps. For T > 0.25 the two sets give identical results, but, at low T, a
smaller number of Monte-Carlo steps slightly affects the results.
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Figure 14. Schematic plot of the fluctuations of the free end of the chain in a perfectly closed
state (left) and in a mismatched state (right).

In Figure 13, the case without mismatch shows a smooth melting curve, similar
to the results of Figure 11. In the low temperature domain where the hairpin is
closed, 〈d〉 is larger than the value 〈d〉 = 1 that could be expected from a static
image of the closed hairpin because there are fluctuations. They are particularly
important at the free end of the stem, as schematised on Figure 14.

When mismatches are allowed, the curve 〈d(T )〉 shows a fairly sharp kink around
T = 0.215, and then an increase, qualitatively similar to cases without mismatch,
but occurring however more more smoothly and at higher temperature. The kink,
which corresponds to a jump of 〈d〉 of about one unit, is due to the formation of
a mismatched closing where only 4 base pairs of the stem are formed (Figure 14,
right part). As temperature is raised further, the number of paired bases in the stem
keeps decreasing, but, as there are many more possibilities for binding than in the
no-mismatch case, the opening of the hairpin is more gradual.

3.3. KINETICS OF THE OPENING AND CLOSING

Up to now we spoke of the opening transition of the hairpin as if the hairpin should
be closed at low T and open at high T. It is actually more complex because, in a
small system like the hairpin, a phase transition between two states does not exist.
Actually we always have a equilibrium between the open form O and the closed
form C

C ←→
kcl

ko
O, (10)

which can be studied like a chemical equilibrium rather than a phase transition.
At low T the equilibrium is displaced towards closing and at high T it is displaced
towards opening.

This suggests that the methods of chemical kinetics can be used to analyse the
dynamics of the fluctuations of the hairpin. Let us consider that the hairpin is a
two-state system. This is obviously an approximation which becomes very crude
when mismatches are allowed since, in this case, the hairpin can also exist in some
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Figure 15. Normalised histograms of the distance d between the two ends of the chain (a), and
number of hydrogen bonds (b) for a hairpin with N = 50 and no mismatches, at temperature
T = 0.36. This temperature is close to the opening temperature Tm of this hairpin. Model
parameters EHB = −1, Ea = 0.02. The histograms show the coexistence of two populations:
one population of completely open hairpins (large values of d and 0 hydrogen bonds) and a
population of closed hairpins in which some of the hydrogen bonds are formed, the highest
probability being with 4 hydrogen bonds formed.

intermediate states where it is incompletely closed. In the absence of mismatch, the
two-state picture is a satisfactory approximation, as shown in Figure 15. This figure
shows the histogram of the distance d between the two ends of the chains, and the
histogram of the number of hydrogen-bonded base pairs at temperature T = 0.36
for a model without mismatch with N = 50. This temperature is close to the melting
temperature Tm for this model, and the histograms clearly show the coexistence of
two populations of states: (i) an open state, where there are no hydrogen-bonded
pairs in the stem, which corresponds to the hump for d > 5 on Figure 15(a), (ii)
a closed state corresponding to the sharp maximum for d < 4 in Figure 15(a)
and to the existence of 2 to 5 hydrogen-bonded base pairs in Figure 15(b) (with a
maximum at 4, due to the opening fluctuations at the end of the stem as discussed
above and schematised in Figure 14, left).

The two-state picture allows us to write standard kinetic equations for the pop-
ulations [C] and [O] of the closed and open states as

d [C]

dt
= −ko[C] + kcl[O] (11)

d [O]

dt
= +ko[C] − kcl[O], (12)

where k0 and kcl are the kinetic constants for the opening and closing events re-
spectively. This system has the solution

[C](t) = C0ko

ko + kcl
e−(ko+kcl )t + C0kcl

ko + kcl
, (13)
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where C0 is the value of [C] at time t = 0. This shows that, if we start from a pop-
ulation of closed hairpins, we expect it to decay exponentially with a characteristic
time τ = 1/(ko + kcl) until an equilibrium is reached with

[O]

[C]
= ko

kcl
= Ke, (14)

where Ke is the equilibrium constant.
Therefore, if we follow the evolution of the population of closed hairpins in

a Monte Carlo simulation which starts from C0 closed configurations, we can
determine separately τ (from the decay of the closed population) and Ke from the
final equilibrium state, so that we can determine the kinetic constants for opening
and closing, given by

ko = 1

τ

1

1 + Ke
kcl = 1

τ

Ke

1 + Ke
(15)

Figure 16 shows the results of such an analysis for a case without mismatches.
The open/closed state of the chain was measured with two different criteria: from
the distance d between the two ends (a value d > 4 is considered as an open state)
or from the number of hydrogen-bonded base pairs (an open state must not have
any bound base pair). Both give very similar results, in agreement with the above
discussion of Figure 15 which shows that both criteria can be used to separate
between the open and closed states. When they are plotted in logarithmic scale

Figure 16. Arrhenius plot of the kinetic constants kop (open symbols) and kcl (closed symbols)
versus 1/T for a model without mismatch, N = 50, EHB = −1, Ea = 0.02. The time unit is
a Monte-Carlo step. The lines are least square fits of the points (full lines for opening state
defined by d > 4, and dashed lines for opening defined by the absence of hydrogen bonded
base pairs).
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versus 1/T , the kinetic constants are well fitted by straight lines, which allows us
to define activation energies Eo and Ecl for the opening and closing events by

ko = Koe−Eo/T kcl = Kcle
−Ecl/T (16)

The fits of Figure 16 give Eo = 6.3 and Ecl = 2.5. Figure 16 is very similar
to the figures showing k0 and kcl which can be obtained experimentally [5]. The
experiments also find an opening activation energy much larger than the closing
energy. The experimental ratio Eo/Ecl is even larger than the ratio that we derive
from our model. Owing to the simplicity of the model, it would be meaningless to
try to adjust parameters to get the experimental ratio. What is more interesting is
the meaning of this result Eo � Ecl , which can be related to the need to break the
hydrogen bonds linking the base pairs to open the hairpin, while the kinetic of the
closing is dominated by entropic effects because it occurs when the two sides of
the stem managed to reach the correct spatial position after a random walk in the
configuration space.

Experiments show that the opening kinetics is almost insensitive to the length
of the loop, while the closing slows down significantly when the length of the loop
increases (kcl decreases) while its activation energy does not depend on the length
of the loop. The model confirms that the activation energies do not vary when we
change N, but it only finds a very small variation of kcl as a function of N, contrary
to the experiments. This points out one of its severe limitations: the entropy of the
loop is not sufficiently well described when its motions are constrained on a two-
dimensional square lattice. This limitation also appears when we study the effect of
the rigidity of the loop. As noticed above, the effect is very small and to obtain some
noticeable influence of the rigidity, we have to increase the bending energy very
significantly, for instance up to E A = 0.6 (Figure 12). In this case the activations
energies become Eo = 5.5 and Ecl = 2.5, i.e. the opening activation energy is
reduced by about 12% and the closing energy is only weakly affected, while the
experiments found a large increase of the closing activation energy and almost no
change for Eo. This shows that, for this study, our model does not correctly describe
the experiment. Besides an incorrect description of entropic effects in the model,
that we already mentioned above, other phenomena could enter, and particularly
a possible role of the mismatches in the experimental sequence. While the model
strictly forbids mismatches, in the experiments, changing the bases in the loop from
A to T modifies the possible mismatches.

As one could expect, the kinetics of the hairpin fluctuations is strongly affected
by the presence of mismatches. The two-state approach is no longer valid. Mis-
matched states are open if we define them in terms of the distance between the ends
but still show many hydrogen-bonded base pairs. Although the time evolution of
the closed states is no longer a simple exponential decay, an approximate fit by an
exponential gives the order of magnitude of the characteristic time τ . Figure 17
shows the values of τ determined with two definitions of an open state: (i) a state
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Figure 17. Logarithmic plot of the characteristic time for opening τ versus 1/T for a case with
mismatches. The squares (fitted by the full line) correspond to a definition of the opening from
the distance of the two ends (d > 2) and the crosses (fitted by the dashed line) define opening
by the absence of any hydrogen-bonded base pair. The time unit is a Monte-Carlo step.

where the distance of the two ends of the chain is d > 2, (ii) a state where all the
hydrogen bonds linking the bases in the stem have been broken. Figure 17 shows
that the lifetime of closed hairpins defined according to these criteria vary by several
orders of magnitude. This is not surprising because a hairpin which is closed in a
mismatced state may be counted for open for the first criterion (d > 2) but closed
with respect to the second one since some of its base pairs are hydrogen bonded.
In this case the above analysis to calculate ko and kcl loses its meaning.

The role of the mismatches in the experimental studies of molecular beacons [5]
has not been investigated so that we cannot compare the results of the model with
experimental data. Although the sequence used in [21] could in principle allow
wrong closing, there were certainly much less likely than in our study where all
base pairs of the stem are the same. Moreover, studies using a fluorophore and a
quencher are only probing the distance d between the ends of the chain, so that they
are not sensible to wrong closings. For such a study the hairpin is still a two-state
system.

4. Conclusion

We examined two approaches to study DNA at the scale of a nucleotide rather than
the atomic scale considered in molecular dynamics simulations.

The model of Section 2 is similar to molecular dynamics because it solves the
equations of motions of a system of units interacting through given potential terms.
The difference lies in the units, which are nucleotides instead of atoms, but also
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in the interaction potentials which are specifically designed to properly describe
the interactions between complex objects. This is particularly noticeable for the
stacking potential. It is not expressed, as usual, in terms of the distance between
the units since it includes the differences of their coordinates ((yn − yn−1), which
is the one-dimensional distance), but also the sum yn + yn−1 which is necessary
to express that, if any of the two bases which interact belongs to a broken pair,
the interaction decreases. Establishing such potentials is crucial to the success of a
mesoscale approach, and the comparison with experiments is essential to determine
their validity. For the dynamical DNA model that we discussed in Section 2, studies
of the thermal denaturation of DNA were very important to establish and validate
the model.

The determination of appropriate parameters is one major difficulty of meso-
scopic models because the interactions that they describe are effective interactions,
actually involving many local interactions. For instance the potential V (y) which
links the bases in a pair is not only determined by the hydrogen bonds linking the
bases. The repulsion between the negatively charged phosphate groups, screened
by counter ions coming from the surrounding solution, is also essential, but it is
hard to calculate from first principles. This is why single molecule experiments
are very helpful to calibrate the models. They provide data which complement the
thermodynamic studies, such as the investigation of DNA thermal denaturation,
which have been available for decades and have been very useful in the derivation
of parameters for the Ising-like models of DNA. Single molecule experiments are
useful first because their results are not averaged by statistics over 1023 (or much
more) molecules, and they may also give dynamical quantities. Another difficulty
of mesoscale simulations is the proper description of thermal fluctuations with an
appropriate thermostat. A simple Langevin or Nosé thermostat may be too crude
to describe for instance what happens to a base when it is inside the DNA stack,
i.e. weakly coupled to the surrounding fluid, or, on the contrary in an unstacked
position where it should be strongly coupled to the surrounding.

We have shown that the model can give interesting results to study the mechanical
denaturation of DNA. There are however many open questions, that complementary
studies using experiments and modelling may answer. One of them is the correlation
between the sequence and the opening probability. Although it is related to the ratio
between the AT and GC pairs in the sequence because AT pairs are easier to break,
the full picture is more complex. We have shown for instance that a region with
5 AT pairs may open more easily than another which has 6 consecutive AT pairs.
Such effects, which are also observed in experimental and theoretical studies of the
opening of DNA in the vicinity of promoters [2], are still not understood.

The problem of the self assembly of DNA hairpin is very different because, in
this case, we are interested in events which occur on time scales of nanoseconds to
microseconds or even longer. In this case we gave up dynamical simulations and
used a Monte Carlo simulation which amounts to a stochastic exploration of the
phase space. The two-dimensional lattice model that we introduced is extremely
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simple, but we showed that it nevertheless captures some important aspects of the
fluctuations of DNA hairpins such as the variation of the melting temperature with
the length of the loop and its rigidity, and can even study some kinetic properties
and detect the large difference between the closing and opening activation energies.
This tells us that these properties of the hairpin are not due to peculiarities of the
DNA structures, but are on the contrary general properties of a polymer chain that
can form a hairpin by establishing bonds between two terminal regions.

However this model suffers from an incorrect evaluation of the entropy of the
loop. This is a problem of the lattice model, but it is particularly acute for a two-
dimensional square lattice.

In both cases, the interest of such models is not their ability to reproduce the
reality, because this would not tell us very much about DNA. This ability should
only be viewed as a test of the validity of the model, which can then be used to
explore some properties which are hardly accessible to experiments. For instance
the dynamical model of DNA can explore the details of the fluctuations of the
molecule as a function of its sequence on a scale of a few tens to a few hundreds of
base pairs. This may provide a tool to analyse the sequence which completes the
static analysis, or the thermodynamics studies which have shown their interest for
very long sequences (tens of thousands of base pairs) but do not have a sufficient
resolutions to study a few tens of bases. Similarly the hairpin model could be used
to study the role of the mismatches on the fluctuations for instance.
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