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ABSTRACT A fluxon in a Josephson-junction parallel array
behaves like a single particle in a periodic pinning potential.
Different configurations of critical currents and cell areas result
in different profiles for the fluxon potential. We analyze the min-
imal conditions to achieve an effective potential in which mirror
symmetry is absent, namely a fluxon ratchet potential. Follow-
ing one of the configurations, we designed circular arrays and
probed some of the fluxon properties. Theoretical predictions
are nicely fulfilled by the experiments.

PACS 05.40-a; 74.50+r; 85.25Na

1 Introduction

Directional motion of particles [1] is an active
field of research which is rapidly moving from basic to ap-
plied physics. Although initial attempts have been made to
apply the underlying ideas to biomolecular motors [2, 3],
the most promising applications belong to the world of
nano- and micro-technologies. At a molecular level some
interesting designs have been proposed [4], but it seems
that an easier experimental realization could be achieved at
the micrometer scale. Towards this aim, devices based on
the Josephson effect are being proposed and studied. Za-
pata et al. [5] have proposed a ratchet SQUID with one
and two junctions respectively in each arm to break the
spatial symmetry. Following this idea other designs have
been cast using the effective potential created by an ex-
ternal magnetic field in a long Josephson junction [6, 7].
In superconducting thin films several mechanisms and ap-
plications have been proposed related to directional vor-
tex (or flux) motion. Lee et al. [8] devised a method for
“cleaning” parasitic vortices from superconducting devices
using an appropriate geometric ratchet potential. Fluxons
also can be “directed” and “focused” using ratchet effective
potentials [9].

We study the properties of a fluxon in parallel Josephson-
junction (JJ) arrays. JJ arrays are becoming an excellent
workbench for the predictions of non-linear dynamics the-
ory. In particular, parallel arrays are experimental realizations
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of the Frenkel–Kontorova (FK) or discrete sine-Gordon (sG)
model [10]. A fluxon in the Josephson array behaves like
a kink in this system. The feasibility of fabricating micro-
electronic circuits with any desired geometry and a broad
range of physical parameters allows one to obtain any en-
ergy profile for the fluxon. In this review, we first describe
the physics and equations for fluxons in an inhomogeneous
array. We calculate the dynamical properties of a fluxon for
different parameters of the array, showing that, in some gen-
eral circumstances, it exhibits a ratchet behavior [11]. Fi-
nally it is shown how the experiments in fabricated micro-
circuits fulfill the predicted critical current and external field
dependence [12].

2 Parallel array

A JJ is a solid-state device that consists of two
superconductors which are linked by a non-superconducting
region [13]. The main physical properties of the junction are
given by the Josephson relations:

V = Φ0

2π
ϕ̇ , I = Ic sin ϕ , (1)

where ϕ stands for the superconducting phase difference be-
tween both sides of the junction and V and I are the voltage
and the current across the junction respectively. The critical
current, Ic, is the maximum superconducting current the junc-
tion can support, and Φ0 = h/2e is the flux quantum.

Using lithographic techniques is possible to construct ar-
rays of well-characterized JJs. In one dimension, series ar-
rays have been mainly studied in the context of synchroniza-
tion of harmonic oscillators [14]. On the other hand, one-
dimensional parallel arrays have been studied as a system for
fluxon transport [15].

Here, we consider circular arrays formed by JJs connected
in parallel (see Fig. 1). We will consider junctions shunted by
small resistors (Rs); thus capacitive effects can be neglected,
and we are in the overdamped limit of the array. We derive the
basic equations of this system:

Vj

Rs
+ Ic j sin ϕj = I(t)+ Ij−1 − Ij . (2)
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FIGURE 1 Equivalent circuit of the parallel Josephson-junction (JJ) array.
Each JJ is shunted by a resistance in order to have overdamped dynamics. Lj
represents the plaquette self-inductance

The phase difference around a plaquette is given by

ϕj+1 −ϕj = 2π
Φj

Φ0
, (3)

where

Φj = Φext − Lj Ij (4)

is the magnetic flux through a plaquette – the sum of two con-
tributions: external and induced magnetic fields – where L is
the total self-inductance of the cell.1 In this paper we will set
Φext = 0.

Combining (1), (2), (3) and (4), we obtain

Φ0

2πRs
ϕ̇j + Ic j sin ϕj = I(t)+ Φ0

2πLj−1
(ϕj−1 −ϕj)

+ Φ0

2πLj
(ϕj+1 −ϕj) , (5)

and by normalizing the current by one of the critical cur-
rents, Ic, and time by 2πRs Ic/Φ0, we obtain the dimensionless
equations

ϕ̇j +hj sin ϕj = I(τ)

Ic
+λj−1(ϕj−1 −ϕj)

+λj(ϕj+1 −ϕj) , (6)

where hj = Ic j/Ic and λj = Φ0/2πIcLj . We have to impose
periodic boundary conditions: ϕj+N = ϕj +2πM, where N is
the number of junctions and M is the number of topological
excitations (discrete solitons or kinks) in the circular array.

For uniform arrays the self-inductances, L, and critical
currents, Ic, are independent of index j . Then, the equations
correspond to the well-known standard FK model, whose
static and dynamical properties have been intensively studied
over the last few years [10, 16, 17]. This model was initially
proposed as a model for the study of dislocations but has
become paradigmatic for the study of modulated phases, dy-
namical phase transitions and kink dynamics. The FK model
can be visualized as a model for a set of non-linear pendula
coupled by harmonic springs. Its continuous limit [(ϕj+1 −
1 When writing (4) we assume only mesh self-inductances.
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FIGURE 2 Schematic of a fluxon (discrete soliton or kink) in the parallel
array. Upper panel: fluxon minimum configuration. Lower panel: saddle-
point configuration. Energy differences between them define the Peierls–
Nabarro barrier

ϕj) → 0 and 1/λ = 2πIcL/Φ0 → 0] corresponds to the inte-
grable sG model.

For zero external driving (and zero external field) the low-
est energy configuration of phases corresponds to the uniform
state ϕj = 0 (or 2πn, in general).

When cooling in the presence of an external magnetic
field, quanta of flux (fluxons), can be trapped in the array.
When removing the external field (thus Φext = 0), fluxons re-
main trapped in the array. A fluxon in the array corresponds
to a jump of ±2π in the phases around the array (see Fig. 2).
In the continuous limit, a fluxon corresponds to the sG soliton
given by

φ(x) = 4 arctan{exp[x − X(t)]/l0} , (7)

where X(t) is the position of the soliton and l0 stands for the
soliton width, with l0 = √

λ at low values of 1/λ. sG soli-
tons are invariant under continuous translations, and hence
any finite force can move them. The sG model is suitable
for modeling long JJs [6, 7, 18]; however, the parallel array is
an intrinsically discrete system and is modeled by a discrete
model (the FK model). In this system, the main consequence
of considering the effect of the discretization is the loss of
the continuous translational invariance property and hence the
pinning of the fluxon. Thus, a non-zero force is needed to de-
pin the fluxon (depinning force). An example of this effect
can be observed in Fig. 2. To displace the fluxon site in the
array, we need to go to a higher energy intermediate configu-
ration, which is a saddle point of the phase’s energy landscape.
The energy difference between these configurations is usually
known as the Peierls–Nabarro barrier [19] for the fluxon (from
the dislocation theory).2

Thus, a fluxon has to overcome an energy barrier to go to
the next plaquette. However, the dynamical properties of this
process are not completely characterized by this barrier, but
also by its shape, which is related to the critical forces, fre-
quencies, relaxation times, etc. A way to accomplish this task
is to identify the fluxon with a particle whose position is given
by its center of mass. Following this idea, the collective coor-
dinate method [20] allows for an analytical calculation of the
profile of the barrier in the low pinning regime. Essentially,
a functional form for the fluxon is assumed (usually that of the

2 Depending on the context a defect in the ground-state configuration
is called a soliton, kink, dislocation or discommensuration. Since we
are dealing with a superconducting system, the localized defect solution
corresponds to a fluxon.
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continuous limit). Then a perturbation method is used to treat
the discreteness. The method works very well for low values
of the discreteness parameter (1/λ), but fails for the higher
ones in which the width of the fluxon is of the order of the
plaquette length.

To numerically compute the potential profile for the
fluxon, we used the following procedure: first, we find the
saddle-point configuration which corresponds to the fluxon
on the top of the potential. Second, starting from this con-
figuration we move the system to relax (using (6)) to the
minimum-energy configuration. Such relaxation occurs by
following the steepest direction on the energy landscape,
given by the eigenvector associated with the only negative
eigenvalue of the stability matrix of the configuration at the
saddle point. During the relaxation we work out the energy
and center of masses of the configuration, obtaining the poten-
tial profile E(XCM):

XCM = 1

2
+ 1

2π

N∑
j=1

j(ϕj+1 −ϕj) (8)

and

E/EJ =
∑

j

h j(1 − cosϕj)+ λj

2
(ϕj+1 −ϕj)

2 , (9)

where EJ is the characteristic Josephson energy of the junc-
tion, EJ = Φ0 Ic/2π.

Finding the desired saddle-point configuration can be
a very tough task. One possibility is to use intuition about this
configuration in the small-λ limit. Another procedure is to first
locate the minimum-energy configuration of a fluxon and then
move the configuration slowly, fixing an appropriate phase
and minimizing the rest of phases to the minimum of energy.
The force needed to keep this configuration is calculated, and
the process is iterated until a saddle point is reached where the
force is zero and the linear stability analysis gives a negative
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FIGURE 3

a b

c d
Energy profile E(XCM) for different values of asymmetry pa-

rameters (α, β) and λ = 0.25. a α = β = 1.0; regular array. b α = 0.5,
β = 1.0; different critical currents and same plaquette areas. c α = 1, β = 0.5;
same critical currents but different plaquette areas. d α = 0.5, β = 0.5 gives
a “ratchet-like” potential

eigenvalue. In Fig. 3a we show the computed profile for the
fluxon in a regular array with λ = 0.25.

3 Ratchet behavior

Different configurations of critical currents and
cell areas result in different profiles for the fluxon potential.
Using the concepts introduced in the previous section, we
are ready to analyze the minimal conditions to achieve an ef-
fective potential for the fluxon in which mirror symmetry is
absent, a fluxon ratchet potential. It is important to highlight
that all interactions in the system are symmetric in the field
variables (superconducting phases). Thus, the inversion sym-
metry breaking has to be geometrical, i.e. using the possibility
of spatial variations of the array parameters. We have two sets
of parameters available: plaquette self-inductances and junc-
tion critical currents.

We found two different simple possibilities for design-
ing arrays which display fluxon ratchets potentials. The first
case corresponds to the choice of junctions with two dif-
ferent critical currents and cells with two different areas
(and thus two different values for the cell self-inductances).
This conditions can be implemented in (5) by setting {Ic j} =
{Ic, αIc, Ic, αIc, . . .}, and {Lj} = {L, βL, L, βL, . . .}, with α

and β fixing the degree of asymmetry in our lattice. The
second case corresponds to the choice of junctions with
three different critical currents and equal-area cells. This
conditions can be implemented in (5) by setting {Ic j} =
{Ic, α̃Ic, β̃ Ic, Ic, . . .}, and {Lj} = {L, L, . . .}.

Using the method developed in the previous section, we
calculated the fluxon energy profiles for four different array
configurations. Figure 3 shows potential profiles for a set of
the model parameters (λ, α, β) with λ = 0.25. In Fig. 3a α =
1.0 and β = 1.0, which corresponds to a regular array. In
Fig. 3b α = 0.5 and β = 1.0 (different critical currents), and
the energy profile shows a double-well structure symmetric
with respect to the top of the wells. In Fig. 3c α = 1.0 and
β = 0.5 (different inductances), and the potential is symmetric
with respect to the bottom of the wells. As expected, for other
cases the potential profiles do not show inversion symmetry.
The values α = 0.5 and β = 0.5 (Fig. 3d) give a good ap-
proximation to the asymmetric sawtooth potential used in the
literature [21] and form the desired fluxon ratchet potential.

We also computed, as a function of λ, the positive and
negative values of the depinning current (the minimum cur-
rent required to move the fluxon) and the PN barrier, EPN,
for the cases of the regular and ratchet (α = β = 0.5) ar-
rays (see Fig. 4). Assuming a sinusoidal profile for the fluxon
potential, we expect to obtain a depinning current equal
to I reg

PN /Ic = Ereg
PN/2EJ for the case of the regular array and

I rat
PN/Ic = Erat

PN/4EJ for the ratchet array, since the heights of
the barriers are EPN and the spatial periodicities are equal to 1
and 2 respectively.

The solid lines in the figure correspond to the two IPN
defined above. The depinning current values of the regular ar-
ray adjust to the solid line as expected after Fig. 3a. For the
case of the ratchet array the depinning current is different in
the two directions, corresponding to different depinning cur-
rents in the plus (I+

dep) and minus (I−
dep) directions. We can

see in the figure that for the case of our ratchet array I+
dep
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FIGURE 4 Fluxon depinning currents, Idep, as a function of λ for the ho-
mogeneous and a ratchet (α = β = 0.5) array. Solid lines: predictions from
EPN values (see text). Symbols: numerical computation of the depinning
currents. Inset: difference (∆Idep) between the absolute values of the two
depinning currents for the ratchet array

and I−
dep are significantly different for values of λ between

0.1 and 0.9. In this region I−
dep > I+

dep. At large values of λ

the depinning currents adjust to the expected value, pointing
out an almost sinusoidal potential. The inset shows the dif-
ference (∆Idep = I−

dep − I+
dep) between the values of the two

depinning currents for the ratchet array. As we can see there
exists a moderate range of values of λ for which an important
ratchet behavior is expected. The maximum of these curves is
obtained for λ ∼ 0.22.

We also studied the case of an array with three different
critical currents and all equal inductances. Computation of the
potential profile in this device gives similar results to the other
design, but now the spatial periodicity is equal to three sites of
the array. Good parameter values for this case are α̃ = 0.5 and
β̃ = 0.25 at λ = 0.25.

We will study now the dynamical behavior of a fluxon in
the asymmetric lattice. For all simulations, we take N = 30,
λ = 0.25, α = 0.5 and β = 0.5. We drive the system out of
thermal equilibrium by applying an external ac bias current,
I(t). The normalized I(τ)/Ic term in (6) is then expressed as

I(τ)/Ic = Iac

Ic
sin ωτ + ξ(τ) . (10)

Here, ξ(τ) is white noise [〈ξ(τ)〉 = 0 and 〈ξ(τ)ξ(τ ′)〉 =
2kBT/EJδ(τ − τ ′)] which, in the absence of other forces,
brings the system to thermal equilibrium. Thus, the equations
of motion take the form of a system of stochastic differential
equations. We have solved them using a fourth-order Runge–
Kutta method for the deterministic part and a third-order one
for the stochastic part [22].

We will concentrate first on the deterministic (T = 0) dy-
namics. For a positive driving we find I+

dep ≈ 0.28 whereas
for negative driving I−

dep ≈ 0.495 (for the symmetric case,
α = 1.0, β = 1.0 and Idep ≈ 0.305).

When applying ac currents we should observe an I–
V curve (dc voltage versus current amplitude Iac) show-
ing rectification of the external current for current ampli-

tudes above the smallest of the depinning currents, and with
a maximum efficiently for amplitudes close to the biggest
one [2]. Figure 5 shows the I–V curves at T = 0 for three
different values of the frequency, ω. The low-frequency re-
sponse clearly resembles that found for a single particle [23].
As it was noted in one-particle simulations, voltage is
quantized:

V/Ic Rs =
N∑

i=1

〈φ̇i〉 = 2
(

p

q
ω

)
, (11)

p and q being integers. These voltage steps correspond to
mode-locking attractors in which a fluxon moves 2p pla-
quettes in q periods of the driving force [10, 24]. For a finer
resolution, the I–V curves appears to have a devil’s staircase
structure [23] (see inset of Fig. 5c).

Finally, we discuss the effect of thermal noise in the fluxon
dynamics. At non-zero temperature the steps become rounder
due to thermally activated jumps between the mode-locking
attractors. At a high enough temperature (in the adiabatic
limit) the whole step structure disappears and a smooth curve
is found (see Fig. 6). In this limit we can fit the I–V curve
with the solution of Magnasco [21] for a sawtooth ratchet po-
tential. We found a good fit (see Fig. 6) for the asymmetry
ratio, λ1/λ2 = 0.56, and energy barrier, ∆E/EJ = 1.6, ob-
tained from the computed energy profile (see Fig. 3d).

FIGURE 5

a

b

c

Voltage–current curves at T = 0 and with an ac current for dif-
ferent frequencies: a ω = 2π0.0025, b ω = 2π0.0125 and c ω = 2π0.025.
λ = 0.25 and α = β = 0.5
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FIGURE 6 Voltage–current curves for an ac current at T = 0.01 and ω =
2π0.0025 (compare with Fig. 5a). Thick line: comparison with (3) of [21]
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FIGURE 7 Voltage–current curves for an ac current for the three-junction
model (λ = 0.5, α̃ = 0.5, β̃ = 0.25) at T = 0 (solid line), T = 0.005 (dashed
line) and T = 0.025 (dotted line) and ω = 2π0.033

At higher frequencies the I–V curves are more complex.
Figure 7 show the curve for the three-junction model. At
very low temperature the steps are stable with regard to ther-
mal fluctuations and probably could be observed in real ex-
periments. At higher temperatures, the first peaks became
rounded and broadened, and surprisingly new peaks appeared
at high currents which are absent in the deterministic curve.
These thermal induced peaks are a consequence of jumps be-
tween very close stable and unstable pinned fixed points of the
deterministic dynamics [25].

4 Experiments

To verify the theoretical predictions, we have de-
signed and measured the four circular rings schematically
shown in Fig. 8. Figure 9 illustrates the ratchet ring. Our pur-
pose is to be able to compare the effects of the different array
configurations on the fluxon properties. The rings are fabri-
cated with an Nb–Al2Ox–Nb tri-layer technology; we inject
the current and measure the dc voltage across a junction.
The measured arrays were not shunted by external resistors.
Thus, a complete model for the junction current in this situ-
ation should include capacitive terms. This is not important

FIGURE 8

a b

c d
The four measured arrays: a regular ring (α = β = 1.0), b ring

with two alternating critical currents (α = 0.43, β = 1.0), c ring with two al-
ternating cell areas (α = 1.0, β = 0.53) and d ratchet ring with alternating
critical currents and cell areas (α = 0.43, β = 0.58)

FIGURE 9 Picture of the ring array corresponding to a ratchet pinning po-
tential with α ≈ 0.5 and β ≈ 0.5

in this paper, since we have only probed depinning currents,
which do not depend on the damping of the array. More details
about the experimental setup can be found in [12]. It will be
shown experimentally that only the circular ring in Fig. 8d has
a ratchet pinning potential.

In Fig. 10 we show the typical measured I–V curves for
the different rings shown in Fig. 8 biased by a dc current. Fig-
ure 10a is for the regular ring. As expected, the I–V curve
is symmetric with respect to the applied current direction.
In the superconducting state, the voltage remains at zero as
the current is increased and stays at zero for currents below
the depinning current. Beyond the depinning value, the volt-
age increases and some structure appears, as is shown. This
structure is due to resonances and instabilities caused by the
underdamped nature of the array. Figure 10b is a ring with al-
ternating critical currents, and Fig. 10c a ring with alternating
areas. In all the cases a single fluxon is trapped in the super-
conducting rings. In Fig. 10b and c we again see that the I–V
curve is symmetric with respect to the current direction and
that there is some voltage structure. Since for these three rings
I+
dep = I−

dep, we can infer that the kink travels on a symmetric
pinning potential as theoretically expected.

Figure 10d shows an I–V curve for the ring with both al-
ternating critical currents and areas. The I–V curve of this
ring is qualitatively different from the other rings due to the
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a b

c d

Current–voltage curves for the rings considered in Fig. 8
(a corresponds to Fig. 8a and so on). Rings a, b, and c have symmetric
I–V curves as the current is swept in the positive and negative directions.
The measurements correspond to one fluxon trapped in the array. Ring d is
the ratchet ring, as can be seen from the difference in the depinning current
in the positive and negative directions

ratchet nature of the pinning potential. We see that Idep in the
positive direction is ∼ 65% of that in the negative direction.
We also note a different voltage structure in the up and down
directions. We will focus on Idep measurements as a signature
for ratchet behavior in our arrays.

In the experiments fluxons are trapped in the ring by cool-
ing the sample in the presence of an external field. Once the
array becomes superconducting, quanta of field, the fluxons,
can be trapped in the array and remain trapped after remov-
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c d

Measured critical currents
versus the applied flux for the four types
of rings. The measurements was made at
a T = 8.8 K with λ ≈ 0.9; b T = 9 K
with λ ≈ 0.9; c T = 9 K with λl ≈ 0.7 and
λs ≈ 1.3; and d T = 8.8 K with λl ≈ 0.3
and λs ≈ 0.6. In this last case, the line
varying about Idep = 0 is the difference
between I+

dep and I−
dep

ing the external field. Depending on the intensity of the field,
a different number of fluxons, M, can be trapped. In a ring the
critical current is only determined by the number of fluxons
trapped, as can be inferred from (6) and the system boundary
conditions. Then, it is an interesting issue to study the proper-
ties of the array as a function of the external field.

Figure 11a shows a measurement of the depinning current
versus the applied flux for the regular ring shown in Fig. 8a.
Each plateau in the figure represents a different number of
fluxons trapped in the ring. This is a direct result of flux
quantization: The ring only allows an integer number of flux
quanta, even when slightly more or less flux is applied. Since
N = 8 and this ring has a symmetric pinning potential, we ex-
pect I+

dep = I−
dep (no ratchet effect) and a period of 8, as can be

seen in the measurements. We also see that Idep has a reflection
symmetry at about M = 4.

When we alternate the critical currents in our ring, we ex-
pect the same qualitative features of Idep as in the regular ring.
Figure 11b shows a measurement of the depinning current ver-
sus applied flux for the ring shown in Fig. 8b which has two
alternating critical currents. There are plateaus corresponding
to different values of M just as in the regular ring; there is up–
down symmetry and periodicity with M = 8 as expected and
reflection symmetry at about M = 4.

If we make all the critical currents constant and vary only
the cell area, as in Fig. 8c, then we alternate the values of λ,
but the pinning potential remains symmetric. The result of
measuring Idep is shown in Fig. 11c. As expected the data is
symmetric with respect to the current direction, so kinks are
not traveling in a ratchet pinning potential. However, unlike
in the previous rings, Idep is no longer periodic with M = 8.
Such an effect was predicted in [12], where it was shown
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that the period depends on the ratio of the inductances. For
our geometry L1/L2 ≈ 1.8 or 9/5, which implies a period
of 56. However, in any physical array the inductance ratio
is rarely going to be exactly a ratio of small numbers. Just
on physical grounds we expect a very large period, if any, in
the experiments. In Fig. 11c the depinning current we meas-
ured from M = −15 to M = 15 is shown, and though there
is some apparent self-similarity in the data, it is not peri-
odic. Though there is no period, we can still prepare our
ring systematically with M = 1, 2, 3, etc., by counting the
plateaus. But instead of M = 1 and M = 1 + N yielding the
same dynamical system as in the regular ring, they are now
distinguishable.

When we alternate both the critical current and the cell
inductances as in Fig. 8d, it is possible to form a ratchet pin-
ning potential (see Fig. 3d). Figure 11d shows an experiment
on such a ring. Since the period depends on the inductance
ratio, we experimentally expect a very long period. This is
borne out by the data, as there is no sign of a period in the
range from M = −15 to 15. We also expect that I+

dep �= I−
dep,

since the kink is traveling in a ratchet pinning potential. The
line shown in the center of the figure varying about Idep = 0
is the difference between the I+

dep and I−
dep. Clearly, the force

to move kinks in one direction is different than the force to
move it in the opposite direction. The magnitude and direc-
tion of this ratchet effect depends on the number of kinks in the
system.

5 Conclusion

The study of fluxons in Josephson-junction parallel
arrays provides an excellent opportunity to check the predic-
tions of the theory about directional motion of particles in
ratchet potentials. We have shown that quite simple designs
on a Josephson-junction parallel array produce controllable
potential profiles. The experiments nicely fit the main predic-
tions of the theory.

The results reviewed here open the possibility for further
studies. For instance, experiments under ac currents are still
to be performed. In addition, a finite density of fluxons can
easily be introduced in the array, and then genuine collec-
tive effects could be observed. In this case, fluxon–fluxon or
fluxon–phonon interactions will play an important role.

Finally, the feasibility of going into the quantum regime
(by reducing the system sizes and the temperature), opens the

possibility of studying the ratchet effect in a quantum macro-
scopic object.
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