

$E/k_B~({ m K})$	x = 0.03	x = 0.1	x = 0.25	x = 0.5
Δ_0	5.31(1)	4.93(6)	4.05(4)	3.32(3)
Δ_1	10.4(1)	8.15(7)	7.65(5)	7.19(4)
Δ_2		12.1(5)	10.2(3)	15.6(2)
Δ_3				34.6(1.2)

$E/k_B~({ m K})$	x = 0.03	x = 0.1	x = 0.25	x = 0.5
Δ_0	5.31(1)	4.93(6)	4.05(4)	3.32(3)
Δ_1	10.4(1)	8.15(7)	7.65(5)	7.19(4)
Δ_2		12.1(5)	10.2(3)	15.6(2)
Δ_3				34.6(1.2)

$E/k_B~({ m K})$	x = 0.03	x = 0.1	x = 0.25	x = 0.5
Δ_0	5.31(1)	4.93(6)	4.05(4)	3.32(3)
Δ_1	10.4(1)	8.15(7)	7.65(5)	7.19(4)
Δ_2		12.1(5)	10.2(3)	15.6(2)
Δ_3				34.6(1.2)

$E/k_B~({ m K})$	x = 0.03	x = 0.1	x = 0.25	x = 0.5
Δ_0	5.31(1)	4.93(6)	4.05(4)	3.32(3)
Δ_1	10.4(1)	8.15(7)	7.65(5)	7.19(4)
Δ_2		12.1(5)	10.2(3)	15.6(2)
Δ_3				34.6(1.2)

• The dilution of LS Co^{3+} in $NdFe_{1-x}Co_xO_3$ is equivalent to the inclusion of magnetic vacancies in the system

• The vacancies uncompensate the AF Fe ordered sublattice, increasing the Fe-Nd interaction and inhibiting Nd cooperative order for $x \ge 0.1$

• A mean field model for the parent compound has been modified to take account for low doping $NdFe_{1-x}Co_xO_3$ (x \leq 0.1)

• It is appealing to suggest that this is the mechanism for negative magnetization in manganites (isntead of ferrimagnetism)

RMO₃ : Model systems M-M, M-R, R-R interactions.

S. Rosenkranz, Ph.D. Thesis ETH Zürich, 11853 (1996)

NdNiO₃ : crystal structure

• *Pbnm* orthorhombic perovskite

Each Nd ion is placed at the center of a Ni cube

Ni occupies *ab* planes : A planes

Ni magnetic order in NdNiO₃ : "Model 1"

Α

J.L. García Muñoz et al., Phys. Rev. B **50**, 978 (1994) *J.L. García Muñoz et al., Phys. Rev. B* **51**, 15197 (1995)

"Model 1": Two kind of magnetic Nd ions

J.L. García Muñoz et al., Phys. Rev. B 50, 978 (1994)

A microscopic probe:

high resolution Inelastic Neutron Scattering

Quadruple Magnetic unit cell, $T_N = 200 \text{ K}$

Mean field model: *specific heat*

Spin Hamiltonian for the Nd system:

$$H = -2\theta_c \rho \hat{\mathbf{r}} - 2\theta_p v \hat{\mathbf{n}}_x - g_x \mu_B H_{exc} \hat{\mathbf{n}}_x - 2\theta_c \rho^2 - 2\theta_p v^2$$

Self interaction terms
Ni-Nd Zeeman term (eff. exchange field)
Nd-Nd exchange of the polarized component
Nd-Nd exchange in cooperative mode

where...

$$\rho = -\frac{1}{2} < \hat{\mathbf{r}} > \text{ and } v = -\frac{1}{2} < \hat{\mathbf{n}}_x >$$
 are mean field order parameters for the cooperative and induced order modes

 θ_c and θ_p are the Nd-Nd exchange constants in cooperative and polarized modes Free energy :

$$\mathsf{F}^{\acute{a}} = \sum_{\acute{a}=\pm,0} \frac{1}{2} \theta_{\rm c} \rho^2 + \frac{1}{2} \theta_{\rm p} v^2 - T \ln \left\{ 2 \cosh \left(\frac{\Delta^{\acute{a}}}{2T} \right) \right\}$$

with

$$\Delta^{\acute{a}} = \left(\theta_{c}\rho\right)^{2} + \left(g_{x}\mu_{B}H_{exc}^{\acute{a}} + \theta_{p}v\right)^{2}$$

being the exchange splittings of the $Nd^{3+}(\pm, 0)$ ground doublets.

By minimizing F with respect to ρ and ν , we get the characteristic equations of the system, which gives the ordered net Néel moments ρ and ν as a function of *T*.

Ecuaciones características :

Entropy...

 $S = \ln 2 + \sum_{\dot{a}=\pm,0} \ln \left[\cosh\left(\frac{\Delta^{\dot{a}}}{2T}\right) \right] - \frac{\Delta^{\dot{a}}}{2T} \tanh\left(\frac{\Delta^{\dot{a}}}{2T}\right)$ 0.3 and specific heat : **a** 0.2 **B**⁺⁻ $\mathbf{B}^{\mathbf{0}}$ 0.1 $\Delta_{t}^{0} = 2.6 \text{ K} \simeq \Delta_{e}^{0} = 4.1 \text{ K}$ $\Delta_{t}^{\pm} = 5.3 \text{ K Z } \Delta_{e}^{\pm} = 5.2 \text{ K}$ 0 2 3 0 $T_{Nt} = T_{Ne} = 0.77 \text{ K}$ 1 4 **T** (**K**)

Results for $H^0_{exc} = 0$:

Results for $H_{exc}^0 > 0$:

Only intermediate (though different) values for both, H^{\pm}_{exc} and H^{0}_{exc} reproduce the experimental results

Glassy behaviour of the Nd sublattice induced by Fe doping in $NdFe_xGa_{1-x}O_3$

F. Bartolomé ^{a,*}, M. Parra-Borderías ^a, J. Blasco ^a, J. Bartolomé ^a

^aInstituto de Ciencia de Materiales de Aragón, CSIC - Universidad de Zaragoza. Pedro Cerbuna 12, 50009 Zaragoza. Spain

Fig. 1. Low-temperature specific heat measurements on the $NdFe_xGa_{1-x}O_3$ system for x = 0 (\blacksquare), 0.05 (\circ), 0.1 (\bullet) and 0.2 (\square). The inset shows the data in a double-log scale, up to 30 K to evidence the lattice contributions.

Fig. 2. Analysis of the low-temperature specific heat data (\circ) for x = 0.05 (top), x = 0.1 (middle), and x = 0.2 (bottom). See the text for details.

