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The exchange interaction that gives rise to ordered magnetic
states depends upon interatomic spacing. If the lattice is de-
formable, then a spontaneous distortion of the lattice will occur
in the ordered state. We have calculated, in the molecular field
approximation, the properties of a system in which the exchange
energy dependence is given by To=T[14B(v—20)/v0]. T is the
Curie temperature appropriate to a lattice volume v while v, is
the equilibrium volume in the absence of magnetic interactions.
The course of the magnetization with temperature of such a
system depends upon the steepness 8 of the exchange interaction
dependence on interatomic distance, the compressibility K, and
Ty. The behavior may be the usual second-order transition to
paramagnetism, but it can in fact become a first-order transition
with the properties usually associated thereto, e.g., latent heat

INTRODUCTION

S a ferromagnet is heated, the magnetization

usually decreases in a continuous manner and
vanishes at the Curie temperature. This behavior
indicates that the change of phase from ferromagnetism
to paramagnetism at the Curie temperature is not a
first-order phase transition in as much as the entropy
(which is monotonically and continuously related to
the magnetization)- suffers no discontinuous change.
Indeed the Weiss molecular field theory of ferromag-
netism gave the first analytic treatment of a second-
order phase transition.

It is of interest to inquire whether or not it is possible
for this transition to be one of first order. Our interest
in this question arose from some experiments on the
stoichiometric compound MnAs. As has been known
for many years,’® this compound exhibits a discon-
tinuous loss of ferromagnetism just above room tem-
perature (see Fig. 1), and associated with this transition
there is a latent heat of 1.79 cal/gm.? Early
examination®~7 had concluded that there was no change
of crystal symmetry at this transition® although there
is the discontinuous change of lattice parameter (i.e.,
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and discontinuous density change. In the absence of an externally
applied pressure, the transition will be of the first order if
n=40NkKT o3[ j(74+1) /[ (274+1)*—1]>1. In this inequality,
N is the number per unit volume of magnetic ions of angular
momentum j#% while £ is the Boltzmann constant.

We have reviewed the experimental evidence on the nature of
the first-order magnetic transition in MnAs. We find that this
evidence indicates the transition to be one from ferromagnetism
to paramagnetism rather than ferromagnetism to antiferromag-
netism as has been generally assumed. Application of the theory
noted above gives n=2 for this transition. In addition, we derive
a value for the volume strain sensitivity, 3=19 and infer the
compressibility to be 2.2)X10712 cm?/d.

density) that is associated with a first-order phase
change. This transition has been generally ascribed to
a transition from ferromagnetism to antiferromag-
netism, but in the earlier treatments—prior to the
recognition of antiferromagnetism as a possible state—
it was supposed that the high temperature state was a
paramagnetic one.® We shall review the experimental
evidence in order to decide what magnetic state is a
proper description of this compound. In view of the
inconclusive nature of the published experimental
evidence on this point we have been moved to examine

SOME PROPERTIES OF MnAs
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Fic. 1. Some features of the first-order phase transition
exhibited by the compound MnAs.
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FIRST-ORDER PHASE TRANSFORMATION

the theoretical possibility of a first-order phase change
from ferromagnetism to paramagnetism. We find that
such a transition exists if the exchange interaction is a
sufficiently strong function of lattice spacing and the
lattice is compressible. This prediction, coupled with
the properties of manganese arsenide and homologous
compounds, indicates that the transition in manganese
arsenide is probably of this type. Moreover, recent
unpublished neutron and x-ray diffraction measure-
ments by Kasper and Wilson, reviewed later, show this
state to be paramagnetic. The generality of our treat-
ment suggests that this phenomenon may not be unique
to this compound.

In addition to the magnetic interest of this investi-
gation, we have found in it a convenient model to
elucidate the nature of first- and second-order phase
transitions and, in particular, it points out the close
relationship between them—a relationship that Wan-
nier' has recently emphasized.

PHYSICS OF THE MODEL

Before proceeding to a detailed calculation, it may
be helpful to give a feeling for the physics of our
treatment. First, let us consider the usual method of
treating magnetic disorder in which there is assumed to
be a ferromagnetic interaction between the magnetic
moments localized on each atom site and further,
usually implicitly, that this interaction is not a function
of lattice spacing. At low temperatures there exists
substantially complete magnetization or perfect long
range order. As the temperature is raised, the thermal
randomization tends to destroy this order and the
magnetization falls. The course of the magnetization is
described more or less by the Brillouin function and at
the Curie temperature, T, the spontaneous magneti-
-zation becomes zero without discontinuity. This trans-
formation is of second order and the cooperative nature
of the system is reflected by a discontinuity in the
specific heat at T'; there is not, however, the latent
heat or discontinuous density change that characterizes
a first-order transition.

Now let us consider what results if we assume that
the exchange energy (or Curie temperature) is a strong
function of interatomic spacing. We show such a de-
pendence in Fig. 2(a) in the form of an exchange that
depends on atomic volume. At absolute zero the
system’s free energy may be lowered by a distortion of
the lattice in the direction of increasing the Curie
temperature. The distortion will introduce to the free
energy a term in strain energy which will increase the
free energy, and thus a compromise between distortion
and exchange may be found that minimizes the free
energy. This volume is indicated in Fig. 2(a) as o, If
we compare the course of the magnetization with
temperature of such a system that is free to distort
(free system) with that of a system whose volume is

10 G, H. Wannier, Elements of Solid State Theory (Cambridge
University Press, New York, 1959), Chap. 4.
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F1c. 2. A schematic representation of the volume-dependent
exchange interaction (a) and some effects that result in (b) the
sample volume and (c) the magnetization.

fixed (clamped system), we find the behavior sketched
in Fig. 2(c), which omits the usual thermal expansion
in order to focus upon magnetic effects. At low tem-
peratures the free system will lose less of its magneti-
zation than the clamped system because its effective
Curie temperature (close to 77) is greater than that
of the clamped system, e.g., Fig. 2(c). If this change in
apparent Curie temperature is large enough, then as the
temperature is raised it is possible for the free system
to have magnetization at temperatures greater than
the Curie temperature, T, of the clamped system.
Since the driving force to lattice expansion is caused
by the ordered magnetic spins, the loss in magnetic
moment or order at higher temperatures causes a
diminution of the lattice strain as indicated in Fig.
2(b). Upon further elevation of temperature the mag-
netization will decrease, but there is no way for it to
decrease smoothly to zero since its existence at these
temperatures is due to the distortion which in turn is
caused by the magnetization. This situation can only
be resolved by a discontinuous loss of magnetization,
ie., a first-order phase transition. The situation is
like that of a man who has run beyond the brink of a
cliff ; there is no gentle way down. There is a change in
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volume at this transition that is caused by the loss of
magnetic distortion, and a change in entropy that is
occasioned by the loss of magnetic order as well as any
change in lattice entropy associated with the volume

" change. Thermal hysteresis appears because, on cooling,
the magnetization is not re-established until a tempera-
ture close to the “true” Curie point is reached. The fact
that the transition may be first order depends upon the
conditions of examination, i.e., in this treatment we
allow the crystal to be “unclamped.” A rigid (unde-
formable) crystal will not exhibit these features. Rice™
has made this point explicitly in a theoretical treatment
of the magnetic transformation in a two-dimensional
Ising lattice.

DETAILED MODEL

The model that we consider is of a collection of
interacting magnetic dipoles and we assume that their
interaction may be approximated by the molecular
field model. The central assumption of the model is
given in Eq. (1) which is that

Te=To[14+B(v—20)/v0], (1

where T, is the Curie temperature, while 7y would be
the Curie temperature if the lattice were not compres-
sible, v is the volume, and v, would be the volume in
the absence of exchange interactions. 8 is the slope of
the dependence of T on volume, and may be positive
or negative. Let us now consider the case of particles
of spin 4 and we shall later generalize the results to
arbitrary spin. The Gibbs free energy per unit volume
is, within the molecular field approximation,

Go=—HM o— NkT0?/2+ (1/2K)[ (v—10)/0
+P(v—1v0)/vo— TNEk[In2—% In(1—¢?)
—c tanh™0]], (2)

where the first term on the right is the field term; the
second, exchange; the third, distortion; the fourth,
pressure; and the last, entropy. In (2), H is the applied
magnetic field, M, the saturation magnetization, o the
relative magnetization, N the number of particles per
unit volume for volume v, % is the Boltzmann constant,
and K is the compressibility. P and T are the pressure
and temperature, respectively. The entropy of the spin
system is obtained by the straightforward application
of the Boltzmann definition of entropy.? We neglect
other terms, in particular the entropy of the lattice,
since the main conclusions may be drawn from this
simplified form while in a later section we shall examine
the contribution of the lattice entropy. We now mini-
mize the free energy with respect to the volume by
inserting expression (1) into (2) above, taking the
partial derivative with respect to v, and equating the

110, K. Rice, J. Chem. Phys. 22, 1535 (1954).

12 TS, Smart, Phys. Rev. 90, 55 (1953). Smart’s paper contains
an omission in its Eq. (5) which should contain a factor of % in

each factorial term of its denominator and will then yield the
Eq. (6) given there.
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resulting expression to. zero. The volume that mini-
mizes the free energy satisfies the condition that

(v—10)/v0= NKkTo80*/2— PK. 3)

This result shows that the volume change is due to a
simple sum of the effects of magnetization and pressure.

By substitution of (3) into (2) above, minimizing
the resulting expression with respect to o, and setting
the applied field H equal to zero, we determine the
course of the normalized spontaneous magnetization.
The result may be expressed conveniently as the
implicit dependence

T/Ty= (¢/tanh¢) (14+n02/3— PKB), (4)

with n=3NkKT8. Expression 4, with the applied
pressure set equal to zero, is plotted in Fig. 3 for various
values of the parameter 7. The maximum temperature,
that for #>1 corresponds to the discontinuous change
in magnetization, is properly the beginning of a re-
entrant branch (drawn in dash for n=4). Since this
branch is not energetically the stable one, we have
omitted it here and drawn instead the abrupt transition
to paramagnetism. We shall shortly examine the
energetics of this transition in more detail. Notice that
for n <1 the transition is of second order (y=0 gives the
usual function for j=3), while for >1 the tran-
sition is of first order. In expression 4 the term PK@
accounts for our primary statement (1) that the Curie
temperature changes with unit cell volume. We may
see this point by examining (4) for the temperature at
which ¢=0. Since

limg/tanh~lo=1,
>0

we have
T.=Ty(1—PKB) 5)

as we must by our initial assumption. This critical
temperature T’ is the paramagnetic Curie temperature
that is the intercept on the 7" axis of a plot of reciprocal
susceptibility vs temperature.

It is instructive to examine the free energy in more
detail. Let us return to the Gibbs free energy obtained
by substitution of (3) into (2). We expand the entropy
into a power series of o and after collecting terms in
like powers of o we obtain

(2Go/ NET o) min= — P2K/NET,
—(2T/To) In2—2HM ,0/NET,
+[T/To—14PKBo>+1[T/To—n]o*
+ (T/15T 0o+ (T/28T )0+ (T/45To)a™0+ - - -.  (6)

Neglecting terms independent of ¢ and in the absence
of a magnetic field let us examine the dependence of
the free energy on ¢ for various temperatures. For
T/To<1 and o small the free energy is dominated by
the ¢ term and is decreasing because of that term’s
negative coefficient. At larger ¢’s the o4, ¢ etc., take
over and the energy increases as a result of their positive
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contributions. The minimum in free energy occurs at
the stable value of ¢ for the temperature of the evalu-
ation. We have previously calculated the trajectory of
o with T (Fig. 3). The paramagnetic Curie point, as
found previously (and again here), corresponds to the
coefficient of the ¢% term becoming zero, i.e., Eq. (5).
The transition will occur at this temperature and be
second order provided that the coefficient of the o*
term is positive, i.e.,

To/To>n. (7

This last condition is necessary because otherwise at
temperatures above 7', the negative ¢* contribution
leads to a minimum energy at o0 and gives rise to
the first-order transition indicated previously. We may
generalize our previous result (that in the absence of
an externally applied pressure n=1 separates the first-
and second-order transitions) by the more general
requirement that if

PKB>1—n, (8)

then the transition is of first order. Thus for 8 positive
it appears possible to change a transition of the kind
envisioned here from second to first order by appli-
cation of sufficient external pressure. If 8 is negative,
the reverse is true, i.e., sufficient pressure will change a
first to a second-order transition. We shall subsequently
examine the usual effect of pressure on a first-order
transition.

We may illustrate further some of the features of the
free energy of a first-order transition by plotting the
free energy isotherms in the wvicinity of the critical
temperature. Figure 4 is such a plot appropriate to
n=1.2, (P=0), and j=3.

Notice that the free energy minima that determine
the spontaneous magnetization are a sensitive function
of the temperature. The numbers associated with each

Fic. 3. The reduced spontaneous magnetization, o, versus the
reduced temperature for different values of the parameter 7 as
obtained by evaluating expression 4 in the text. If »>1, the
transition to paramagnetism is of first order, and the magnetiza-
tion is lost abruptly at the maximum temperatures indicated for
the different » values.
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Fic. 4. The free energy isotherms in the vicinity of T for a
spin § system characterized by n=1.2; the curve indices are the
ratio T/T.

curve are the reduced temperature 7/T, With in-
creasing temperature the free energy minimum moves
to lower values of ¢ while becoming less and less pro-
nounced. Eventually the minimum is degenerate in
energy with that corresponding to ¢ =0, and in sufficient
time the magnetization will go to zero via a fluctuation.
In the absence of nucleation processes, it may require
long times, and we note that this “equilibrium” value,
Tequit/ To, is not necessarily the one observed in finite
times. The maximum temperature that can retain
>0 corresponds in the plot (Fig. 4) to the isotherm
that just attains a zero slope in free energy vs ¢ plot,
thus giving a ‘“down-hill-all-the-way” picture. In the
case plotted in Fig. 4 this corresponds to a value
Tmax/To=1.005. On cooling, i.e., starting from a state
of ¢=0, we notice a somewhat similar situation in that
the equilibrium temperature, Tequii/To, has the same
value, but one must now decrease the temperature
below this value to remove the barrier. The energy
barrier in this case goes to zero at Tmin= T and allows
supercooling as compared to superheating in the pre-
vious cycle. The maximum thermal hysteresis that is
expected for this model thus derives from the energy
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F1c. 5. The dependence upon 7
of the maximum and equilibrium
temperatures of the magnetization
determined from the free energy
isotherms similar to Figure 4.

barriers between the local minima in free energy as a
function of magnetization. We have plotted in Fig. 5
the critical and equilibrium - temperatures as they
depend upon 7 for the case =% and P=0. The maxi-
mum observable thermal hysteresis in the absence of
nucleation will be dependent upon 7 and equal to the
separation between T'mux and Tmin. For cross reference
we have evaluated the magnetization at these critical
temperatures and have plotted these against 5 in Fig.
6. The critical magnetization is useful in estimating
the latent heat of the transformation since the spin
system entropy is conveniently expressed in terms of .
The latent heat is

The entropy change of the lattice may be either a
positive or a negative contribution, depending upon
the sign of 8.

The magnetic contribution to the thermal expansion
is contained in Eq. (3), which gives the volume that
minimizes the system free energy. This is the contri-
bution that must be added to the normal (i.e., non-
magnetic) thermal expansion to obtain the total
thermal expansion. We have plotted this expression in
Fig. 7 for P=0, j=4%, and various values of 5. For
n>1 a discontinuous volume change occurs at the
transition. In Fig. 8 there is plotted this discontinuous
change in volume as a function of #. It is to be noted
here that the magnetic contribution to the thermal

. . L= Lopin+ Liattice, ©) expansion can yield a negative over-all thermal ex-
in which pansion even for continuous transitions, i.e., <1, for
Lyyin=TAS (). (10)  sufficiently large compressibilities and sufficiently steep
1.0~ o (T MIN)
o (TEQUIL)
9
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8-
Jd
Kis
%
S F16. 6. The dependence upon 7 of the magnetization
at the temperatures indicated.
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Curie temperature dependence on specific volume. This
is simply the Invar effect. He?, a nuclear antiferro-
magnet, has been viewed in this framework.®® The
magnetic contribution to the thermal expansion co-
efficient is obtained from (3) by differentiating with
respect to the temperature. By evaluating the limit
of odo/dT (i.e., from the Brillouin function for j=1)
we find! that the lower bound of the magnetic contri-
bution to thermal expansion is |ameg| 2 |3NEKB|.
Thus if |emag| > | @normal |, @ negative thermal expansion
will be observed provided that the sign of T¢8 is
positive. In Fig. 9 are displayed the qualitative features
of this behavior.

COMPARISON WITH EXPERIMENT

We now examine the experimental observations made
on manganese-arsenide. These observations initiated
our interest in the kind of phase transition that we
have been discussing; and although we discuss this

Fi1c. 7. The magnetic contribution to thermal expansion (or
contraction) for several different n values.

compound in most detail, we believe that the treatment
is more general and applies to other materials—we shall
mention one of these later.

The magnetic properties of MnAs were studied in
detail by Guillaud® following the initial studies of
Bates,?* Hilpert and Dieckmann? and others. In Fig.
10 we have replotted Guillaud’s data along with data
from other samples. The data are plotted on normalized
coordinates, the ordinate being the moment measured
in a field of 20 koe at the temperature indicated and
normalized to the moment measured in 20 koe at
77°K. The abscissa is the temperature divided by the
paramagnetic Curie temperature, 285°K, as determined
by Serres.!® The results for measurements made in
magnetic fields of 20 koe or less show the abrupt drop
of the magnetization at a critical temperature. Rodbell

1D, S. Rodbell, Phys. Rev. Letters 7, 1 (1961).

4 The lim,.o(0d/dT)=—3/2T, for the Brillouin function of
j=3%. This value is the maximum expected for the undistorted
Brillouin function.

18 A, Serres, J. phys. radium 8, 146 (1947).
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Fic. 8. The discontinuous change in volume to be expected
at the first-order transition (p>1).

and Lawrence,'® extending the work of Guillaud® and
of Meyer and Taglang,'” have shown that in very large
magnetic fields it is possible to accomplish the phase
transition by field alone and also to observe the dila-
tation resulting from the density change (an effect that
eluded earlier attempts® with fields less than 25 koe).
The course of the magnetization vs applied magnetic
field is given in Fig. 11 for one of the samples examined.
It is noteworthy that the critical field at which large
magnetization changes appear depends upon tempera-
ture. The values of this H,i; for H increasing are
plotted in Fig. 12. The experimental conditions of these
observations are more closely adiabatic than isothermal.
The isothermal observations made by Meyer and
Taglang are reproduced in Fig. 13. The behavior may
be understood as a consequence of the first-order nature
of the transition as originally pointed out by Meyer
and Taglang. In such a case, the Clausius-Clapeyron
relation takes the form AT/T=—HAM/L. AT is the
shift of the transition temperature, 7', under the in-

TOTAL THERMAL EXPANSION
WITH SLOPE CHANGE

/

“—"NORMAL' THERMAL EXPANSION
4/

—

e ————

SPECIFIC
VOLUME

S\~ EXCHANGE MAGNETOSTRICTION"
N,

\
\ -

0
TEMPERATURE

Fic. 9. A representation of magnetic effects upon thermal
expansion, specifically indicating a “negative thermal expansion”
situation.

18D. S. Rodbell and P. E. Lawrence, Suppl. J. Appl. Phys. 31,
275 (1960).
17 A. J. P. Meyer and P. Taglang, J. phys. radium 14, 82 (1953).
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F16. 10. The reduced magnetization vs reduced temperature for
several MnAs samples. I-III are three different samples meas-
ured in this study. IV is a replot of Guillaud’s data. The value of
T9=285°K is determined from data of Serres.

fluence of an applied field H and resulting magneti-
zation change AM. The latent heat per unit volume is
given by L. The observed values of AT, T, H and AM
are in accord with the latent heat quoted in the litera-
ture, i.e., 1.79 cal/g, for this transition originally
measured by Bates.? Similarly one may examine the
shift of the transition temperature under a hydrostatic
pressure and use the conventional Clausius-Clapeyron
equation, where HAM in the expression above must be
replaced by — PAv/v; P is the pressure and Av/v is the
relative change in volume at the transition. In this
experiment the magnetization was determined as a
function of the applied hydrostatic pressure for different
temperatures. The observations are presented in Fig.
14. We plot in Fig. 15 the pressure at which the mag-
netization is half removed vs the temperature of
observation and compare these data to that predicted
by the Clapeyron relation. The solid line in Fig. 15 is

700—

215+2°C
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500|
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300

200}

[ J
0 20 40 60 80 100 120 140
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F16. 11. Magnetization vs applied magnetic field for a sample of
MnAs (Sample I of Fig. 10). These data illustrate the fact that
the applied field shifts the transition temperature.
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drawn to a slope calculated from the Clapeyron relation
and indicates that there is substantial agreement
between these observations and the volume change and
latent heat independently determined.

We now consider the magnetization data presented
in Fig. 10 and compare these data with the theory that
we have outlined in the previous section. As we have
noted, the data of Fig. 10 are plotted to a temperature
scale normalized to the paramagnetic Curie point (i.e.,
that temperature which corresponds to 7 of our
treatment, determined as the extrapolated intercept
of the inverse paramagnetic susceptibility, 1/x vs
temperature). Since the Curie constant obtained by
Serres would imply a j=% angular momentum state,
we shall compare these data to the theory appropriate
to j=$%. The family of theoretical curves is shown in
Fig. 16, and from inspection it would appear that n=2
would be a close representation for MnAs. We present
in Fig. 17 the data for MnAs and the theory for n=2
with j=3$. The plot for j=% is also included for
comparison. The agreement between experiment and
theory is quite striking.

If we assume this description to be valid, we may
determine the various parameters of manganese
arsenide. From Eqs. (A6) and (A7) of the Appendix

we have for j=%

Av/v=0.90NEK T80 orit?, (11)

(12)

and
n=2.20NkK T3

In Eq. (11), Av/v is the fractional volume change at
the transition and ot is the fractional magnetization
at the transition. If we take from experiment Av/v
=1.8,X10"2, N=29;X102 cm=3, T(=285°K, ouit
=0.65, and n=2, we may deduce values for the com-
pressibility, K, and the strain sensitivity of the ex-
change interaction, 8. We find K to be 2.2X10™2 d—!

Hegir{koe)

0 o, 20 30 40 S50 60 70 80 90 100
TEMP. °C

F1c. 12. The critical field vs the temperature as determined
from Fig. 11. The critical field represented here is chosen as the
onset of the increase in magnetic moment of the sample.
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Fic. 13. A replot of the data of Meyer and Taglang who first
measured the shift of transition temperature with applied field
for MnAs.

cm? and 8 is 19. Unfortunately, there is no information
on the compressibility of MnAs. Kittel,'%% on the
basis of an alternate theory of the magnetic properties
of MnAs, deduces the compressibility to be 2.4X 10713
d~! cm? This theory, to be discussed in a later section,
assumes the transition to be from ferromagnetism to
antiferromagnetism. A direct measure of the com-
pressibility would be a useful check on the validity of
the two theories. The experimental value for 8 is also
unknown but is in rough accord with the strong vari-
ation in Curie temperature for the compounds MnAs,
MnSb, and MnBi.}?:20

Let us now examine the latent heat of the trans-
formation on the basis of the model that we propose.
The latent heat arising from the spin disorder is
Lyag=TASs,in. From the critical magnetization at the
transition we may calculate the value of ASy,;, on the
assumption that the final state is one of complete spin
disorder. For o¢it=0.65 and j=3% we have? ASyi/Nk
=0.42. From this we obtain Ly.,=2.05 cal/g. This is
in reasonable agreement with the observed latent heat
of 1.8 cal/g. To the magnetic latent heat should be
added the latent heat of the lattice, which we may
expect to be a small negative number. The lattice latent
heat is negative because the lattice shrinks upon heating
at the transformation temperature.

18 C, Kittel, Phys. Rev. 120, 335 (1960).

19 A direct measure of the volume dependence of the magnetic
ordering temperature for the compound CrTe has recently been
reported by Grazhdankina, Gaidukov, Rodionov, Oleinik, and
Shchipanov, J. Exptl. Theoret. Phys. (USSR) 40, 433 (1961)
[translation: Soviet Phys.—JETP 13, 297 (1961)]. This material
is similar to MnAs in that it is of the NiAs structure and has a
comparable electrical resistivity (~200u ohm). For this material
B==8 is determined using the measured pressure dependence of
the Curie temperature and a directly determined compressibility
quoted by those authors to be 2.240.3X 10712 cm?/d. It is germane
to consider here the fact that the transition in CrTe is observed
to be of second order. We evaluate n for CrTe to be 0.34, a number
less than one, and hence the second-order transition is in accord
with the theory given here.

20 A, J. P. Meyer and P. Taglang, Suppl. J. phys. radium 12,
63 (1951).

21 L. P. Schmid and J. S. Smart, Naval Ordnance Laboratory
Report NAVORD 3640, 1954 (unpublished).
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RELATIVE MAGNETIZATION (MEASURED AT (2 KOE.)
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4

F16. 14. The magnetization measured at 12 koe vs the applied
hydrostatic pressure for a sample of MnAs at the various tem-
peratures indicated.

Finally we note -the negative thermal expansion
behavior that has been observed® in the temperature
region preceding that of the first-order transition.
Recently these observations have been extended to
below room temperature by Kornelsen.? We give
Kornelsen’s data in Fig. 18. The qualitative explanation
of this behavior is given in Fig. 9. We have not at-
tempted to give a quantitative explanation inasmuch
as data over the full temperature range are not
available.

In an interesting recent paper, Kittel'® has made a
simple model of exchange-inversion magnetization.
The free energy function that he assumes is a truncated
form of our Eq. (17) (below). The truncation consists
of eliminating the entropy of the spin system. He
concentrates upon the case in which thermal expansion

1500

oo~

- i

2 .

S 3 012 °C/BAR

T ; CALCULATED FROM
" K CLAPEYRON RELATION

0 L - -

I
20 . 30 40°C

F16. 15. The observed critical pressure vs the temperature com-
pared to the prediction of the Clausius-Clapeyron relation.

2 R. O. Kornelsen (private communication).
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F16. 16. The theoretical course of the magnetization vs the
temperature for a j=4% spin system and evaluated for the indicated
values of 7.

(which arises from the change of lattice entropy with
volume) carries the system from one fully magnetized
state to another, e.g., from antiferromagnetism to
ferromagnetism with increasing temperature. This is
almost certainly the way to explain the properties of
Cr-modified Mn.Sb.?? His tentative application of that
theory to MnAs has, as he recognizes, several difficulties.
First, it is hard to see how thermal expansion can drive
the transition in MnAs since the lattice contracts at
the transition point. Secondly, there is the question of
the experimental evidence for antiferromagnetism
above the transition point.

A fundamental experimental question is whether the
state just above the transition point is paramagnetic,
as we suggest, or antiferromagnetic, as most recent
workers have postulated. The most direct measurement
is that of neutron diffraction. This type of measurement
was first made by Bacon and Street?* who found no
evidence for antiferromagnetism. This experiment has
been repeated by our colleagues Kasper and Wilson,
who have been able, owing to higher neutron fluxes and
greater resolution, to state that for simple models of
the antiferromagnetic state the order indicated by
their data must be less than a few percent of full order.

The question remains then as to the origin of the
susceptibility maximum and specific heat anomaly
near 125°C. These phenomena were the main evidence
for the assignment of the antiferromagnetic state.
Kasper and Wilson?> have shown from a detailed single-
crystal x-ray analysis that an interesting series of lattice
changes takes place. They confirm pervious assignment
of the ferromagnetic (i.e., <40°C) and high-tempera-
ture (>125°C) states as NiAs (hexagonal) structures.
The intermediate state, however, is shown to be an
orthorhombic distortion of the NiAs structure. Kor-

2 T. J. Swoboda, W. H. Cloud, T. A. Bither, M. S. Sadler, and
H. S. Jarrett, Phys. Rev. Letters 4, 509 (1960).

2t G. E. Bacon and R. Street, Nature 175, 518 (1955).

% R. H. Wilson and J. S. Kasper, American Crystallographic
Association 1961 Annual Meeting, Abstract M-8.
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nelsen? has found these distortions by powder x-ray
methods of high resolution. Both Kornelsen and Kasper
and Wilson find that the distortion disappears at 125°C.
We may ascribe this distortion to the Jahn-Teller effect
that is common for the Mn?*t ion. On this interpre-
tation, the maxima in specific heat and susceptibility
are only indications of the onset of this distortion and
are not indicative of cooperative magnetic states.

Very recent work by Heeger, Beckman, and Portis?®
has established that the antiferromagnetic disorder in
KMnF; at 88.3°K is a first-order transition. They have
used the theory outlined above to understand this
transition and derive the strain sensitivity of the
exchange energy and an appropriate elastic constant
of this material.

GENERALIZED FREE ENERGY?2a

For completeness, we shall derive a free energy
function that is generalized in two respects from the
one considered previously. First, we shall include the
possibility of either ferro- or antiferromagnetism.
Secondly, we include explicitly the entropy of the
lattice. Let ¢ be the angle between sublattice
magnetizations (¢=0 for ferromagnetism and = for
antiferromagnetism). For spin £,27 the Gibbs function
per initial volume v, is

Gy=—HM o cos(¢/2)—1/2NET ;02 cos¢

1
+§[ ('U— vo)/v0]2_. T (Ssp in+Slattice)
+P(v—20)/20,

where the first term on the right is the field term; the
second, exchange; the third, distortion; the fourth,
entropy; and the last, pressure. The entropy for a
spin-3 system we have already given in (2), while for
the lattice term we have?® for a volume » that contains
N atoms,

Slattice: 3Nk[x/ (ez__ 1) ——-ln(]_ —_ e-—a:)]’

(13)

(14)
with ®=/v/kT in the usual notation.

2 A. J. Heeger, O. Beckman, and A. M. Portis, Phys. Rev. 123,
1652 (1961).

262 Note added in proof. In a current study, R. W. DeBlois of
this laboratory is extending the experiments on MnAs to include
the effects of high pressures and high magnetic fields on a single
crystal [Proceedings of International Conference on High Mag-
netic Fields, November 1-4, 1961, Massachusetts Institute of
Technology (to be published)]. In addition, he is interpreting the
data with the free energy function, discussed in this section, that
includes lattice entropy. While the interpretation is qualitatively
similar to that given above, there are numerical differences. For
instance, he tentatively finds » to be 3.24-0.3 and the compressi-
bility, K, to be (4.60.4)X10712 d~cm?. He infers the volume
dependence of the Curie temperature, 8, to be 18.5+42.0, and the
volume thermal expansion coefficient to be (5.5241)X1075/°C.

27 This may be generalized to arbitrary spin by the method
provided in the Appendix.

28 See, for instance, J. Lumsden, Thermodynamics of Alloys
(Institute of Metals, London, 1952).
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Fi1c. 17. A comparison of the observed data for MnAs (Fig. 10)

with the theory for j=$%; n=2 is estimated from the volume
change at the transition. The j=3 prediction is indicated in dash.

Fig. 17

Our concern shall be with elevated temperatures,
ie., temperatures comparable to the Debye charac-
teristic temperature, 6. This enables us to simplify the
entropy expression. Letting « be small and in the Debye
approximation we use

Statice= NE[4—3 In0/T+ (3/40)(6/T)*+---], (15)
where 0=/lvax/k. From (15) we have
351attice/a‘l)g—3Ide lnvmax/dv=a1/K, (16)

where a1=(1/v)(9v/0T)p and K=—(1/2)(dv/dP)r.
That is, the lattice entropy change with volume in this
approximation is measured by the thermal expansion
coefficient and the compressibility.?

We now minimize (13) with respect to volume and,
introducing thermal expansion through (16), obtain

(Go)min=—HM 40 cos(¢/2) —3NkT o>
X cos¢[1—B(PK —aT)]— P2K/2—a2T?/2K
+aiTP— (1/2K) (3 NET 408 cosg)?

—TNk[4+1n2—% In(1—0?)—0o tanh™s].  (17)

By a minimization of (17) with respect to o in the
absence of any applied magnetic field we obtain the
implicit dependence of ¢ on T for j=3 to be

T o na?
— —[1—3(PK——a1T)—I——— cos¢:|. (18)
Tocosp tanh—lo 3

2 We can equally well consider the thermodynamic relation
Cp—Cy=0a:2VT/K, in which C, and C, are the specific heats for
the lattice of a volume v at constant pressure and volume, respec-
tively. The entropy of the lattice

si=[ " (Cy/TVaT= J " (/YT + ) " @V /K.
In the approximation that «, is a constant, we obtain the entropy
of a volume v to be:
S1=CyInTHa;(v—120)/K.
In the same approximation, C, is a constant; hence
8S1/dv=a;/K.
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This result is analogous to our earlier illustrative
example but now specifically contains the effect of
thermal expansion.

The generalized free energy function given in Eq.
(17) allows for transitions between antiferromagnetism,
ferromagnetism, and paramagnetism as a function of
field, temperature, and pressure. We hesitate to give
specific examples of these phase diagrams because we
feel that in real materials one must allow for two or more
exchange interactions and their distance dependences.
For instance, one must distinguish between nearest and
next nearest magnetic neighbors in a cubic antiferro-
magnetic lattice. The generalization, so indicated, will
be best made in specific cases for specific experimental
situations.

SHORTCOMINGS OF THEORY

It is necessary to emphasize at this point the short-
comings of the theory that we have developed. In the
first place, the long range interaction implicit in the
molecular field theory is not in accord with experiment
and theory that demonstrate the extreme local character

“of the exchange interactions that give rise to the

ordered state. One consequence of this discrepancy is
the prediction by the molecular field theory of no order
above the Curie temperature of a normal ferromagnet
or antiferromagnet, while experiment shows asignificant
short range order just above the Curie temperature.
Another consequence is that the low temperature
behavior, the excitation of spin waves, is not predicted
by the molecular field model. For our purposes, the
first discrepancy is potentially the most important
since we purport to calculate the transition between
the ordered and disordered state, and if our description
of the disordered state is inadequate, then assuredly
our calculations will be seriously in error. Fortunately,
in the case of the first-order transition the transition is
to a paramagnetic state well above its Curie tem-
perature. In this case the short range order in the
paramagnetic state will be very small and so approxi-
mate our assumption of no order in the paramagnetic

state.
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F1c. 18. Data of Kornelsen showing the negative thermal
expansion in MnAs at temperatures below the discontinuous
changes encountered at the first-order transition.
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As indicated in the previous section, even within the
framework of the molecular field treatment, our
assumptions are quite specialized. We assume, for
instance, that the exchange interaction is a function
only of lattice volumeé, and in addition we assume
isotropy of the elastic properties of the material. In
general these assumptions are incorrect, andin particular
they are not true for MnAs. Indication of this lack of
validity is given by the observation that the contraction
at the critical temperature is not isotropic.® The c¢-axis
spacing is barely affected, if at all. Again, as indicated
in the previous section, one may extend this theory to
more than one interaction by considering sublattices
within the magnetic structure of the material in the
same way as has been done in the conventional mo-
lecular field theory of antiferromagnets and ferro-
magnets. The net result of these extensions will be a
rather formidable bit of algebra. Probably the most
useful approach will be to make the minimum gen-
eralizing assumptions sufficient to treat the problem at
hand.

DISCUSSION OF RELATED PROBLEMS

The first suggestion of a purely magnetic first-order
phase transition was made by Rice.! It is well-known
that one may calculate exactly the spontaneous
magnetization of a two-dimensional square net of
magnetic moments that interact with the Ising inter-
actions,® i.e., an interaction between nearest neighbors
that is a product of their z components of spin. It is
tacitly assumed that these moments are on a rigid
lattice and/or that the interaction does not depend on
lattice spacing between nearest neighbors. The result
of this calculation is a curve that is similar to our
curves for =1 in that the magnetization falls off very
rapidly at the Curie temperature and the specific heat
is infinite at this point. Rice pointed out that if one
admits that the exchange interaction is a function of
lattice spacing and that the lattice is deformable, then
this transition will become one of first order with an
associated latent heat and discontinuous volume change
at the transformation point. In our picture this happens
if the parameter #* is greater than 1.3

Since our calculation is somewhat general, one would
expect to see its analogs in other order-disorder trans-
formations if one includes an interaction that depends
on lattice spacing. Recently Ross and Ter Haar® have
attempted to treat the case of alloy order and disorder
in the quasi-chemical approximation including a volume-
dependent interaction. They show the possibility of
a first-order transformation as well as ‘“anomalous”
expansion near the critical temperature. There is not,
however, a one-to-one correlation between the assump-

% C. N. Yang, Phys. Rev. 85, 809 (1952).
3 p* =y cosp/[1— (PK—a1T)B]>1 is the criterion that deter-
mines a first-order transition within the most general framework

of our treatment.
32 A, W. Ross and D. Ter Haar, Physica 25, 343 (1959).
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tions useful in treating alloy order-disorder and those
we find useful for magnetic order-disorder.

It is well-known that many ferroelectric transitions
are first-order transitions.® Devonshire* has proposed
a phenomenological theory for BaTiOs; in which he
expands the free energy of this material in powers of
the spontaneous polarization. The coefficients are
fitted from experiment. As in our theory, the sign of the
coefficient of the fourth power of the polarization
determines the order of the transition. A necessary
complication in Devonshire’s theory is the inclusion
of the elasticity tensor and direction of the polarization
relative to the lattice. In addition, he found it necessary
to include temperature-dependent coefficients.

CONCLUSION

This paper has two main conclusions: First, that it
is theoretically possible for magnetic disorder to occur
as a first-order phase transition if the exchange energy
is a sufficiently sensitive function of lattice volume or
distortion; secondly, that MnAs shows this behavior
in its transition from ferromagnetism to paramagnetism.
We believe that subsequent experimental work will
reveal more examples of this type of transition. This
belief is reinforced by the recent discovery of the
antiferromagnetic-paramagnetic first-order transition
in KMnF;.

ACKNOWLEDGMENTS

Many of our colleagues have aided us by useful
discussions and experimental assistance. Prominent
among them are I. S. Jacobs, W. Kinzig, J. S. Kasper,
J. S. Kouvel, P. E. Lawrence, and R. H. Wilson. In
addition, we have benefitted from interaction with
A. J. Heeger, C. Kittel, and A. M. Portis of the Uni-
versity of California and R. O. Kornelsen of the
Univesity of Ottawa.

APPENDIX

To generalize our results we must first derive the
entropy expansion for arbitrary spin that corresponds
to the spin entropy in Eq. (2) for spin %. This is easily
done by expansion of the Brillouin function for angular
momentum j
Jj+1 2541 1 1

- coth( x)——~ coth(—x),
2j 2j 2j 2j

in powers of x (where x=gu,jH/kT) to obtain
2j+1)=1x Qj+1)'=1x°

2
7;()=B;(x)=

T 3 @iy 8
112 A
(25)8 945

3 See, e.g., W. Kiinzig in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press, New York, 1957), Vol. 4, p. 1.

# A, F. Devonshire, Phil. Mag. [7] 40, 1040 (1949); [7] 42,
1065 (1951).
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If we write the free energy for an assembly of noninter-
acting spins G;/NkT = —xao;—S(0;), setting 0G/do=0
yields

x;=—095(c,)/da;.
If we express S(o;) as a power series, we must exclude
odd powers of ¢; since complete inversion can have no
effect on the entropy, and thus

S(0;)=35;(0)+ajo P +bjo +cio4- - -
We have from Eq. (A2) that

(A2)

(A3)

If we substitute Eq. (A3) into Eq. (A1) and equate
coefficients of powers of ¢;, we obtain the coefficients
for the power series expansion of the entropy to be

Xi= '—2(1]'0']'—41)]‘0’]‘3—66]‘0]'5— e

,__oLej+y-1 "
20 L2+

We stop at the second term since this is the one that
determines the nature of the transition, since as shown
earlier the coefficient of ¢* in the entropy expansion is
of primary importance.

We may now write the free energy per unit volume
including exchange interaction for arbitrary spin as

37 7 1 /v—uv0\?
G= —~<-—>Nchoz——HMsa—{————< )
2K _

2\j+1 29
377
— In(27 —— — )o?
NkTI:n(Zj—!—l) 2<]_+1>
LTSN,
20 [2(54+D

(AS)

— 7
+#(=7)
Yo
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Inserting T.=To[14B8(v—1p)/v0] into (A5) and by

minimizing that expression with respect to volume we
obtain the equilibrium volume for spin j to be

(A6)

v—vo\. 3 2
( >=— ———NkKToB0*— PK,
250G+

V0
which in turn leads to

Guin —PK  guyjH

T
= o——In(2j+1)
ZVkTo 2NET

kT, T
3/ i \[T
e
2\j+1/LT,

9 [Qj+1)y =1 T
A 0+, (AT
20 2G0T I:To "] FOW) -, (AT)

where
5 4G+

nj=——————NEKT "
2[@2j+1)—1]

We may also obtain the general result for the implicit

dependence of the magnetization on the temperature

by minimizing (AS) first with respect to volume then

again with respect to o. The result (for H, P both

0) is

+-‘_) L2+ 1]”]_012](” /

T_[ 3j
T LG+ 5 R2+DF

[_%(sj/zw]. (A8)



