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Abstract. – We show that Nernst’s original postulate follows directly from a vanishing
heat capacity at zero temperature without further constraints. Thermodynamic stability of
the system along with the independence of the other thermodynamic state variables ensures
a sufficiently slow temperature approach to zero that the change of the entropy of the system
vanishes at least as rapidly as the heat capacity.

Body. – Nernst’s original postulate from 1907 states that the entropy change in any
isothermal process approaches zero as the temperature approaches zero. This is the version
of the postulate we will prove based only on the assumption that the heat capacity of the
system vanishes in the same limit.

For a general thermodynamic system the fundamental equation of thermodynamics and
the entropy differential may be expressed as
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where U , S, T , yi and Yi (i = 1, 2, . . . ) are, respectively, the internal energy, entropy, ab-
solute temperature, generalized coordinates, and generalized forces of the system, while the
unindexed subscript y represents all generalized coordinates. From eq. (1) one obtains [1–5](
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where Cy is the heat capacity when y is held constant. Since (∂2S/∂U2)y < 0 is the equilibrium
stability condition of a general thermodynamic system, this implicitly requires that the heat
capacity Cy is always positive. Equation (4) indicates that the curve of the relation between
S and U when y remains constant, i.e. the curve Sy(U), can only be concave.

Some thermodynamic systems can appear at negative absolute temperature, e.g. in con-
nection with population inversion as in a laser. It follows from eq. (3) and the concavity of
Sy(U) that such negative absolute temperatures are hotter than any positive absolute tem-
perature, while T = +0K is the limit of low temperatures. It is worthwhile noticing that
such an important conclusion is a direct deduction from thermodynamic stability and the first
and second laws of thermodynamics, but not the third one. In the following we will not use
negative temperatures, only the fact that +0K is the lowest possible temperature.

Now we assume that a small reversible adiabatic cooling process is carried out by the
change of the generalized coordinates from y′ to y′′. The temperature change of the system
in the process is (∆T )S , and we get from eq. (2), with ∆S = 0,
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T
, (5)

where (∆yi)S = y′′
i − y′

i. Due to the conclusion above that no temperature can be colder than
+0K, any reversible adiabatic cooling process which starts from a certain positive absolute
temperature T cannot produce a temperature drop −(∆T )S larger than the starting temper-
ature T . Consequently, −(∆T )S approaches zero at least as quickly as T → 0, and in any
reversible adiabatic cooling process −(∆T )S/T can only be a positive number less than or
equal to unity. Now, since the heat capacities by assumption tend to zero as the temperature
approaches absolute zero,

lim
T→0

Cy = 0, (6)

one obtains

lim
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(∆yi)S = 0 (7)

from eq. (5).
It is worthwhile pointing out that when T is very small, so is −(∆T )S , whereas (∆yi)S

need not be small. It may have a finite value which can be varied by controlling the exterior
conditions, whether the temperature of the system is high or low [1,2]. In fact, this observation
has been used extensively in practice. For example, when the relation between the principle of
unattainability of absolute zero temperature and Nernst’s postulate is discussed, it is empha-
sized in many thermodynamics textbooks [2–5] that no matter how low T is, one can make
use of a reversible adiabatic process to lower the temperature of the system still further, e.g.,
by varying the magnetic field of a paramagnetic system from H ′ to H ′′, or, in general, y of
a thermodynamic system can be varied from y′ to y′′. Thus, since the variations (∆yi)S are
mutually independent (although related to (∆T )S through eq. (5) for a reversible adiabatic
process), eq. (7) can only be satisfied if each of the terms in the sum vanishes separately, i.e.

lim
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)
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This statement is not limited to an adiabatic process which we used solely to illustrate the point
that the (∆yi)S need not approach zero even though Cy does, thus necessitating the vanishing
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of each ∂S/∂yi. Consequently, the right-hand side of eq. (2) vanishes for any isothermal process
in the limit of zero temperature, the first term because the process is isothermal, the second
term due to eq. (8), and we have

lim
T→0

(∆S)T = 0. (9)

Thus it is proved that Nernst’s original postulate can be derived from eq. (6) by deduction
from only the first and second laws of thermodynamics. Note that the argument does not in
any way rely on empirical data or experience, just mathematics.
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